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ABSTRACT

Neural networks have become ubiquitous tools for solv-

ing signal and image processing problems, and they

often outperform standard approaches. Nevertheless,
training neural networks is a challenging task in many

applications. The prevalent training procedure consists
of minimizing highly non-convex objectives based on

data sets of huge dimension. In this context, current

methodologies are not guaranteed to produce global
solutions. We present an alternative approach which

foregoes the optimization framework and adopts a vari-

ational inequality formalism. The associated algorithm
guarantees convergence of the iterates to a true solution

of the variational inequality and it possesses an effi-
cient block-iterative structure. A numerical application

is presented.

Index Terms— Block-iterative algorithm, MRI, neu-
ral networks, transfer learning, variational inequality.

1. INTRODUCTION

Deep learning techniques have become very successful

in solving a great variety of tasks in data science; see for
instance [1, 2, 16, 17, 19, 25, 26]. Deep neural networks

rely on highly parametrized nonlinear systems. Stan-
dard methods for learning the vector of parameters θ of

a neural network Tθ are mainly based on stochastic al-

gorithms such as the stochastic gradient descent (SGD)
or Adam methods [18,26], and they are implemented in

toolboxes such as PyTorch or TensorFlow. In this context,

the standard approach to learn the parameter vector θ

is to minimize a training loss. Specifically, given a finite

training data set consisting of ground truth input/output
pairs (xk, yk)16k6K , a discrepancy measure is computed

between the ground truth outputs (yk)16k6K and the

outputs (Tθxk)16k6K of the neural network driven by
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inputs (xk)16k6K . Thus, if we denote by Θ the parame-

ter space, the objective of these methods is to

minimize
θ∈Θ

K∑

k=1

ℓ
(
Tθxk, yk

)
. (1)

One of the main weaknesses of such an approach is that
it typically leads to a nonconvex optimization problem,

for which existing algorithms offer no guarantee of op-
timality for the delivered output parameters. In other

words, the solution methods do not provide true solu-

tions but only local ones that may be hard to interpret in
terms of the original objectives in (1).

The contribution of this work is to introduce an alter-

native training approach which is not based on an opti-
mization approach but, rather, seeks the parameter vec-

tor θ as the solution of equilibrium problems defined by
variational inequalities. Nonlinear analysis tools for neu-

ral network modeling have been employed in [6,7,9,10,

15,20,21,23,24]. Here, we show that training a layer of
a feedforward neural network can be modeled as a vari-

ational inequality problem and solved efficiently via iter-

ative techniques such as the deterministic block-iterative
forward-backward algorithm of [8]. This algorithm dis-

plays two attractive features. First, it guarantees conver-
gence of the iterates to a true equilibrium, and not to a

local solution as in the minimization setting. Second, it

lends itself to an implementation based on a batch strat-
egy, which is indispensable to deal with large data sets.

The strategy of foregoing standard optimization in favor

of more general forms of equilibria in the form of vari-
ational inequalities was first adopted in [13] in a quite

different context, namely signal recovery in the presence
of nonlinear observations.

The paper is organized as follows. Section 2 de-

scribes our new training method, the design of a mini-
batch algorithm to solve the associated variational in-

equality, and convergence properties of this algorithm.

In Section 3, we apply the proposed approach to a trans-
fer learning problem in which the last layer of neural net-

work is optimized to denoise magnetic resonance (MR)
images. Some conclusions are drawn in Section 4.
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2. PROPOSED VARIATIONAL INEQUALITY MODEL

2.1. Variational inequality model for a single layer

We first consider a single layer, modeled by an operator

Tθ acting between an input Euclidean space H and out-

put Euclidean space G, and parametrized by a vector θ
which is constrained to lie in a closed convex subset C
of a Euclidean space Θ. More specifically,

Tθ : H → G : x 7→ R(Wx+ b), (2)

where W : H → G is a linear weight operator, b ∈ G a

bias vector, and R : G → G a known activation operator.
The objective is to learn W and b from a training data

set (xk, yk)16k6K ∈ (H× G)K . Our model assumes that

the parametrization θ 7→ (W, b) is linear. Further, we set

(∀k ∈ {1, . . . ,K}) Lk : Θ → G : θ 7→ Wxk + b. (3)

Thus, the ideal problem is to

find θ ∈ C such that

(∀k ∈ {1, . . . ,K}) Tθxk = yk, (4)

that is, to

find θ ∈ C such that

(∀k ∈ {1, . . . ,K}) R(Lkθ) = yk. (5)

In practice, this ideal formulation has no solution and

one must introduce a meaningful relaxation of it. This is
usually done via optimization formulations such as (1),

which leads to the pitfalls discussed in Section 1.

The approach we propose to construct a relaxation
of (5) starts with the observation made in [9] that

most activation operators are firmly nonexpansive in
the sense that, for every z1 ∈ G and every z2 ∈ G,

〈z1 − z2 | Rz1 −Rz2〉 > ‖Rz1 − Rz2‖
2. Using this prop-

erty, we can show that (5) can be relaxed into the
variational inequality problem

Find θ ∈ C such that

(∀ϑ ∈ C)

〈
ϑ− θ

∣∣∣∣
K∑

k=1

ωkL
∗

k

(
R(Lkθ)− yk

)〉
> 0 (6)

where, for every k ∈ {1, . . . ,K}, L∗

k : G → Θ is the ad-

joint of Lk and ωk ∈ ]0, 1[, and
∑K

l=1
ωl = 1. This relax-

ation is exact in the sense that, if (5) has solutions, they

are the same as those of (6) [12]. We assume that (6)

has solutions, which is true under mild conditions [12].

2.2. Block-iterative forward-backward splitting

We solve the variational inequality problem (6) by
adapting a block-iterative forward-backward algorithm

proposed in [8]. This algorithm splits the computations

associated with the different linear operators (Lk)16k6K

using a block-iterative approach. At iteration n ∈ N,

a subset Kn of {1, . . . ,K} is selected and, for every

k ∈ Kn, a forward step in the direction of the vector
L∗

k(R
(
Lkθn

)
− yk) is performed. The forward steps are

then averaged and projected onto the constraint set C.

Algorithm 1 Take γ ∈
]
0, 2/max16k6K ‖Lk‖

2
[
, θ0 ∈ Θ,

and (ϑk,0)16k6K ∈ ΘK . Iterate

for n = 0, 1, . . .

select ∅ 6= Kn ⊂ {1, . . . ,K}
for every k ∈ Kn⌊
ϑk,n+1 = θn − γL∗

k

(
R(Lkθn)− yk

)

for every k ∈ {1, . . . ,K}rKn⌊
ϑk,n+1 = ϑk,n

θn+1 = projC

(
K∑

k=1

ωkϑk,n+1

)
.

(7)

We then derive the following result from [8].

Proposition 2 Suppose that, for some P ∈ N, every in-

dex k ∈ {1, . . . ,K} is selected at least once within any

P consecutive iterations, i.e., (∀n ∈ N)
⋃P−1

k=0
Kn+k =

{1, . . . ,K}. Then the sequence (θn)n∈N generated by Al-

gorithm 1 converges to a solution to (6).

2.3. Proposed deterministic batch algorithm

In a neural network context, batch approaches are neces-

sary for training purposes. Towards this goal, we modify
Algorithm 1 into a batch-based deterministic forward-

backward scheme to solve (6).

Let us form a partition (Kj)16j6J of {1, . . . ,K} and
assume that, at each iteration n ∈ N, only one batch

index jn ∈ {1, . . . , J} is selected. Then, to avoid keep-

ing in memory all values of (ϑk,n)16k6K , Algorithm 1 is
rewritten below (Algorithm 3) so that only J variables

are kept in memory. Given jn ∈ {1, . . . , J}, θjn,n ∈ Θ
denotes the stored variable associated with subset Kjn .

Algorithm 3 Take γ ∈
]
0, 2/max16k6K ‖Lk‖

2
[
, θ0 ∈ Θ,

and (θj,0)16j6J ∈ ΘJ . Iterate

for n = 0, 1, . . .


select jn ∈ {1, . . . , J}

θjn,n+1 =
∑

k∈Kjn

ωk

(
θn − γL∗

k

(
R(Lkθn)− yk

))

for j ∈ {1, . . . , J}r {jn}⌊
θj,n+1 = θj,n

θn+1 = θn − θjn,n+1 + θjn,n

θn+1 = projC θn+1.
(8)



The sequence (θn)n∈N in (3) converges to a solution

to (6) provided that there exists P ∈ N such that (∀n ∈

N)
⋃P−1

k=0
{jn+k} = {1, . . . , J} [12].

2.4. The case of general feedforward neural net-

works

Let H0, . . . ,HM be Euclidean spaces. A feedforward
neural network Tθ : H0 → Hm consists of a composition

of M layers

Tθ = TM,θM ◦ · · · ◦ T1,θ1 (9)

where the operators (Tm,θm)16m6M are as in Sec-

tion 2.1: θm ∈ Θm is a vector linearly parametrizing

a weight operator Wm : Hm−1 → Hm and a bias vec-
tor bm ∈ Hm, and Rm : Hm → Hm is a firmly non-

expansive activation operator. For convenience, we
gather the learnable parameters of the network in a

vector θ = (θm)16m6M . Given a training sequence

(xk, yk)16k6K ∈ (H0 × HM )K , the approach proposed
in Section 2 is used to train the last layer of the neural

network. For this layer the input sequence is defined by

(∀k ∈ {1, . . . ,K}) x̃k = TM−1,θM−1
◦ · · · ◦ T1,θ1xk. Two

learning scenarios are of special interest:

• Greedy training [4]. Layers are added one after

the other to form a deep neural network.

• Transfer learning [3, 5, 14, 22]. The goal is to re-

train the last layer of a trained neural network to

allow it to be applied to a different data set or a
different task.

3. TRANSFER LEARNING: FINE-TUNING LAST

LAYER OF A DENOISING NEURAL NETWORK

We apply the proposed variational inequality model to a
transfer learning problem for building a denoising neural

network. Transfer learning [3, 5, 14, 22] is often used in

practice to tailor a neural network that has been trained
on a particular data set, for a different type of data and

improve its performance [22].

3.1. General setting for denoising neural networks

We consider a denoising neural network Tθ : H → H
with M layers, defined as in (9). Tθ∗ has been pretrained

as a denoiser, such that

θ
∗ ∈ Argmin

θ∈Θ

K′∑

k=1

ℓ
(
Tθuk, vk

)
, (10)

where each (uk, vk) ∈ H2 is a pair of noisy/ground truth

images, and ℓ : H×H → R a loss function. The objective
is to retrain only the last layer of Tθ∗ in order to use it on

a different type of images. For instance, if the network

has been trained on natural images, it can be fine-tuned
to denoise medical images obtained by modalities such

as MR or computed tomography.

3.2. Simulation setting

In our experiments, Tθ∗ is a DnCNN with M = 20 layers,

of the form of (9), where H0 = R
N×N , H1 = · · · =

H19 = R
64×N×N , and H20 = R

N×N . The layers of
the networks are as follows. For the first layer, W1 rep-

resents a convolutional layer with 1 input, 64 outputs,
and a kernel of size 3 × 3. For every m ∈ {2, . . . , 19},

Wm represents a multi-input multi-output convolutional

layer with 64 inputs, 64 outputs, and a kernel of size
3× 3. Finally, W20 represents a convolutional layer with

64 inputs, 1 output and a kernel of size 3 × 3. We use

LeakyReLU activation functions with negative slope pa-
rameter 10−2. As shown in [9], this operator is firmly

nonexpansive. In addition, we take b1 = · · · = b20 = 0.
The network Tθ∗ is trained on the 50, 000 ImageNet

test data set converted to grayscale images and nor-

malized between 0 and 1. The ground truth images
(vk)16k6K′ correspond to patches of size 50×50 selected

randomly during training. For every k ∈ {1, . . . ,K ′}, the

degraded images are obtained as uk = vk + σbk, where
σ = 0.02 and bk ∈ R

50×50 is a realization of a random

standard white Gaussian noise.
We propose to fine-tune the network Tθ∗ to denoise

MR images. We thus focus on the training of the last

layer T20,θ20 . We choose W20 to be a convolutional layer
with 64 inputs, 1 output, and kernels w of size 7 × 7.

In addition, R20 is a LeakyReLU activation function with

negative slope parameter 10−3. In this context, (3) as-
sumes the form

Lk : R
64×1×7×7 → R

N×N : w 7→ x̃k ∗ w, (11)

where x̃k ∈ R
64×N×N is the output of the 19th layer.

Three training strategies for T20,θ20 are considered:

the standard SGD and the Adam algorithm for minimiz-
ing an ℓ1 loss, as well as the approach proposed in Sec-

tion 2 with C = Θ20 = R
64×1×7×7.

For the three methods, the training set consists of the
first 300 images of the fastMRI train data set, and we

test the resulting networks on the next 300 images of the
same data set. The dimension of the images in this data

set is 320 × 320. We train the networks on patches, by

splitting the images into 16 patches of size 80× 80. The
patches are randomly shuffled every time the algorithm

has seen all the patches of the data set. Moreover, we

split the training set into batches containing 10 patches
located at the same position in 10 images of the train

set. Batches are normalized between 0 and 1, and cor-
rupted with an additive white Gaussian noise with stan-
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Fig. 1: Convergence profiles showing the normalized aver-

aged ℓ
1 (top) and ℓ

2 (bottom) errors (in log scales) with re-

spect to epochs, for the ℓ
1+SGD method (blue), the ℓ

1+Adam

method (green), and the proposed approach (red). Continuous

lines show best step-size (i.e., learning rate) for each method.

Dashed and dotted lines show inaccurate choice of step-size.

Table 1: Average SSIM (and standard deviation) obtained for

the first 300 images of the fastMRI training set, and the next

300 images of the same set.

SSIM

method Training set Test set

proposed 0.6647 (±0.0721) 0.6630 (±0.0597)

ℓ
1+SGD 0.6641 (±0.0770) 0.6627 (±0.0629)

ℓ
1+Adam 0.6598 (±0.0703) 0.6239 (±0.0346)

dard deviation 0.07. One epoch is completed when the
algorithm has seen all the batches at the same location

(i.e., 30 batches generated as explained above). All al-

gorithms are run over 1000 epochs.

The learning rate in SGD and Adam has been tuned

manually to reach the best performances. For Algo-

rithm 3, the best performances are achieved by choosing
a large parameter, namely γ = 1.9/max16k6K ‖Lk‖

2.

3.3. Simulation results

Since the proposed method is not devised as a minimiza-
tion method, we assess the behavior of the three learn-

ing procedure during training by monitoring the ℓp er-

rors
∑K

k=1
‖T20,θ20,e x̃k − yk‖

p
p for p ∈ {1, 2} with respect

to the epochs e ∈ {1, . . . , 1000}. We observe that, for

any choice of the step-size value γ (even not determined
optimally), our method reaches a lower ℓ1 error more
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Fig. 2: Denoising results on the test set corresponding to

slice 399 of the fastMRI training set. First row: ground truth

(left) and corresponding noisy observation (right) with PSNR

= 23.09 dB. Second row: output of the DnCNN trained with

the proposed procedure (left), with PNSR = 29.31 dB, and the

corresponding error map, in log-scale (right).

quickly than SGD and Adam, for any choice of the learn-

ing rate. For the ℓ2 error, any choice of step-size will

lead to faster convergence than Adam. For this example,
an accurate choice of learning rate for SGD leads to a

performance which is similar to that of the proposed ap-

proach. However, choosing an inaccurate learning rate
results in extremely slow convergence (to a local solu-

tion) or diverging behavior for SGD, while our method

converges to a true solution of (6) for any choice of step-
size as long as it satisfies the conditions given in Algo-

rithm 3.

The SSIM values for the 300 training images and the
300 test images are shown in Table 1. We observe that

our approach yields slightly better results for both data

sets. One image slice of the test data set is displayed in
Fig. 2 to show the good visual quality of the proposed

transfer learning approach.

4. CONCLUSION

A new framework has been proposed to train neural
network layers based on a variational inequality model.

The effectiveness of this approach has been illustrated

through simulations on a transfer learning problem.
In future work, we plan to explore further algorithmic

developments and consider various applications of the
proposed technique to other training problems.
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