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ABSTRACT
One fruitful formulation of Deep Networks (DNs) enabling
their theoretical study and providing practical guidelines to
practitioners relies on Piecewise Affine Splines. In that realm,
a DN’s input-mapping is expressed as per-region affine map-
ping where those regions are implicitly determined by the
model’s architecture and form a partition of their input space.
That partition –which is involved in all the results spanned
from this line of research– has so far only been computed on
2/3-dimensional slices of the DN’s input space or estimated
by random sampling. In this paper, we provide the first parallel
algorithm that does exact enumeration of the DN’s partition
regions. The proposed algorithm enables one to finally as-
sess the closeness of the commonly employed approximations
methods, e.g. based on random sampling of the DN input
space. One of our key finding is that if one is only interested
in regions with “large” volume, then uniform sampling of the
space is highly efficient, but that if one is also interested in
discovering the “small” regions of the partition, then uniform
sampling is exponentially costly with the DN’s input space
dimension. On the other hand, our proposed method has com-
plexity scaling linearly with input dimension and the number
of regions.

1. INTRODUCTION

Deep Networks (DNs) are compositions of linear and nonlin-
ear operators altogether forming a differentiable functional fθ
governed by some trainable parameters θ [1]. Understanding
the underlying properties that make DNs the great function
approximators that they are involve many different research
directions e.g. the underlying implicit regularization of archi-
tectures [2], or the impact of input and feature normalization
into the optimization landscape [3]. Most existing results
emerge from a few different mathematical formulations. One
eponymous example relies on kernels and emerges from push-
ing the DN’s layers width to infinity. In this case, and under
some additional assumptions, a closed-form expression for
the DN’s underlying embedding space metric is obtained [4].
With that form, training dynamics and generalization bounds
are amenable to theoretical analysis [5]. Another line of re-
search considers the case of deep linear networks i.e. a DN

Fig. 1. Proposed exact region enumeration depicted as an orange
star against sampling-based region discovery of the partition Ω de-
picted as blue dots for a single hidden layer DN with leaky-ReLU,
random parameters and width 64 as a function of computation time
(x-axis) and number of partition regions found (y-axis); for a 4-
dimensional input space at the top and 8-dimensional input space
at the bottom. The proposed Algorithm 1 is able to dramatically
outperform the sampling-based search that has been used throughout
recent studies on CPA DNs.

without nonlinearities. In this setting, it is possible to obtain
the explicit regularizer that acts upon the DN’s functional and
that depends on the specifics of the architecture e.g. depth
and with [6]. Another direction, most relevant to our study,
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proposes to unravel the Continuous Piecewise Affine (CPA)
mapping of standard DNs [7]. In short, one can combine the
fact that (i) the nonlinearities present in most current DNs
are themselves CPA e.g. (leaky-)ReLU, absolute value, max-
pooling, (ii) the interleaved affine mappings preserve the CPA
property, and (iii) composition of CPA mappings remain CPA.
Thus, the entire input-output DN is itself a CPA. From that
observation, it is possible to study the DN’s loss landscape
[8], the implicit regularizer of different architectures [9], the
explicit probabilistic distributions of CPA Deep Generative
Networks [10, 11], the approximation rates [12, 13], or even
the conditions for adversarial robustness guarantees [14, 15].
A striking benefit of the CPA viewpoint lies in the fact that it
is an exact mathematical description of the DN’s input-output
mapping without any approximation nor simplification. This
makes the obtained insights and guidelines highly relevant to
improve currently deployed state-of-the-art architectures.

Despite this active recent development of CPA-based re-
sults around DNs, one key challenge remains open. In fact,
because under this view one expresses the DN mapping as a
collection of affine mappings –one for each region ω of some
partition Ω of their input space– it becomes crucial to compute
that partition Ω or at least infer some statistics from it. Current
analytical characterizations of Ω are in fact insufficient e.g.
existing bounds characterizing the number of regions in Ω are
known to be loose and uninformative [16]. As such, practition-
ers resort to simple approximation strategies, e.g. sampling,
to estimate such properties of Ω. Another approach is to only
consider 2/3-dimensional slices of the DN’s input space and
estimate Ω restricted on that subspace. All in all, nothing is
known yet about how accurate are those approximations at
conveying the underlying properties of the entire partition Ω
that current theoretical results heavily rely on. In particular,
[17] uses estimates of the partition’s number of region to per-
form Neural Architecture Search (NAS), and for which exact
computation of the DNN’s partition regions will further im-
prove the NAS; [11] uses estimates of the partition to adapt
the distribution of deep generative networks (e.g. variational
autoencoders) and for which exact computation of the partition
would make their method exact, and not an approximation

In this paper, we propose a principled and provable enu-
meration method for DNs partitions (Algorithm 1) that we first
develop for a layer-wise analysis in Section 2 and then extend
to the multilayer case in Section 3. As depicted in Fig. 1,
the proposed method becomes exponentially faster than the
sampling-based strategy to discover the regions ω ∈ Ω as the
input dimensionality increases. Practically, the proposed enu-
meration method enables for the first time to measure the accu-
racy of the currently employed approximations. Our method
is efficiently implemented with a few lines of codes, lever-
ages parallel computations, and provably enumerates all the
regions of the DN’s partition. Lastly, our method has linear
asymptotic complexity with respect to the number of regions
and with respect to the DN’s input space dimension. This

property is crucial as we will demonstrate that sampling-based
enumeration method has complexity growing exponentially
with respect to the DN’s input space dimension as a direct
consequence of the curse of dimensionality [18, 19]. We hope
that our method will serve as the baseline algorithm for any
application requiring provable partition region enumeration,
or to assess the theoretical findings obtain from the CPA for-
mulation of DNs.

2. ENUMERATION OF SINGLE-LAYER PARTITIONS

We now develop the enumeration algorithm for a single DN
layer. Because a DN recursively subdivides the per-layer parti-
tion, the single layer case will be enough to iteratively compute
the partition of a multilayer DN as shown in the next Section 3.

2.1. Layer Partitions and Hyperplane Arrangements
We denote the single layer of a DN1 input-output mapping
as fθ : RD 7→ RK , with θ the parameters of the mapping.
Without loss of generality, we consider vectors as inputs since
when dealing with images, one can always flatten them into
vectors and reparametrize the layer accordingly. The layer
mapping takes the form

fθ(x) = σ(h(x)) with h(x) = Wx+ b (1)

where σ is a pointwise activation function, W is a weight
matrix of dimensions K × D, b is a bias vector of length
K, h(x) denotes the pre-activation map and lastly x is some
input from RD. The layer parameters are thus θ ≜ {W , b.
Although simple, Eq. (1) encompasses most current DNs layers
by specifying the correct structural constraints on the matrix
W , e.g. to be circulant for a convolutional layer. The details
on the layer mapping will not impact our results. The CPA
view of DNs [20, 7] consists in expressing Eq. (1) as

fθ(x) =
∑
ω∈Ω

(Aωx+ bω)1{z∈ω}, (2)

where Ω is the layer input space partition [21]. Understanding
the form of Ω will greatly help the development of the enumer-
ation algorithm in Section 2.2. Given nonlinearities σ such as
(leaky-)ReLU or absolute value, it is direct to see that the layer
stays linear for a region ω so that all the inputs within it have
the same pre-activation signs. That is, a region is entirely and
uniquely determined by those sign patterns

fθ affine on ω⇐⇒ sign(h(x))=sign(h(x′)),∀(x,x′) ∈ ω2,

where the equality is to be understood elementwise on all of
the K entries of the sign vectors. The only exception arises for
degenerate weights W which we do not consider since any ar-
bitrarily small perturbation of such degeneracies remove those

1without loss of generality we consider the first layer, although the exact
same analysis applies to any layer in the DN when looking at the partition of
its own input space



edge cases. From the above observation along, it becomes
clear that the transition between different regions of Ω must
occur when a pre-activation sign for some unit k ∈ {1, . . . ,K}
changes, and because h is nothing more but an affine mapping,
this sign change for some unit k can only occur when crossing
the hyperplane

Hk ≜ {x ∈ RD : ⟨Wk,.,x⟩+ bk = 0}. (3)

Leveraging Eq. (3) we obtain that ∂Ω, the boundaries of the
layer’s partition, is an hyperplane arrangement as in ∂Ω =⋃K

k=1 Hk.
We are now able to leverage this particular structure of the

layer’s partition to present an enumeration algorithm that will
recursively search for all the regions ω ∈ Ω.

2.2. Region Enumeration Algorithm
From the previous understanding that the layer’s partition
arises from an hyperplane arrangements involving Eq. (3),
we are now able to leverage and adapt existing enumeration
methods for such partitions to obtain all the regions ω ∈ Ω,
form which it will become trivial to consider the multilayer
case that we leave for the following Section 3.

Enumerating the regions of the layer fθ’s partition can be
done efficiently by adapting existing reverse search algorithms
[22] optimized for hyperplane arrangements. In fact, a naive
approach of enumerating all of the 2K possible sign patterns
q ∈ {−1, 1}K and checking if each defines a non-empty
region

K⋂
k=1

{
x ∈ RD : (⟨Wk,.,x⟩+ bk) qk ≥ 0

} ?
= ∅,

would be largely wasteful. In fact, most of such sign combina-
tions do produce empty regions e.g. if the partition is central
i.e. the intersection of all the hyperplane is not empty then the
total number of regions grows linearly with K [23] and is thus
much smaller than 2K . Instead, a much more efficient strategy
is to only explore feasible sign patterns in a recursive tree-like
structure. To do so, the algorithm recursively sub-divides a
parent region by the hyperplane of unit k. If that hyperplane
does not intersect the current region then we can skip unit k
and recurse the sub-division of that same region by unit k + 1.
On the other hand, if hyperplane k divides the current region,
we consider both sides of it and keep the recursion going on
both sides. We formally summarize the method in Algorithm 1
and present one illustrative example and comparison against
sampling-based region enumeration in Fig. 1. In particular,
we provide the efficiency of the sampling solution for various
configurations in Table 1.

3. ENUMERATION OF MULTI-LAYERS PARTITIONS

This section demonstrates how the derivation carried out in
Section 2 for the single layer setting is sufficient to enumerate
the partition of a multilayer DN, thanks to the subdivision

Algorithm 1 Proposed region enumeration method for the single
hidden layer case that recursively searches over the feasible sign
patterns q one unit at a time, and only explores the branches that
coincide with non-empty region i.e. avoiding the 2K total number
of possible of combinations. The step checking for intersection
between an hyperplane and a given polytopal region can be done
easily by setting up a linear program with dummy constant objective,
the hyperplane as a linear constraint, and the polytopal region as
inequality constraint; during the feasibility check the test will fail if
the intersection is empty. This algorithm is obtained to provide the
results from Fig. 1 and Table 1. The algorithm terminates once all the
regions of the partition Ω have been visited.

Require: W ∈ RK×D, b ∈ RK , k ∈ {1, . . . ,K}, q ∈
{−1, 0, 1}k

1: if k
?
= K+ 1 then this branch has reached a leaf, the

sign pattern q is feasible and can be accumulated into Ω’s
current estimate

2: Check if the hyperplane defined by (wk, bk) intersects the
polytopal region defined by

⋂k−1
j=1{x ∈ RD : (⟨wj ,x⟩+

bj)qj ≥ 0}
3: if NO then unit j is redundant, call the routine again with

[qj , 0] as q and k + 1 as k
4: if YES then unit j splits the region into two, call the

routine again with [qj , 1] and k+1 and [qj ,−1] and k+1
Ensure: X(L) ▷ Evaluate loss and back-propagate as usual

Table 1. Comparison of our exact enumeration method versus
sampling-based partition discovery for various single layer configura-
tions with random weights and biases. The sampling-based discovery
is run 5 times and we report the average and standard deviation of
the number of regions found after sampling. The number of input
space sample is obtain so that the computation time of the proposed
method is the same as the computation time of the sampling method
i.e. for each configuration, both methods have run the exact same
amount of time. We observe that for low-dimensional input space,
and with the same fixed time-budget, both methods perform simi-
larly and sampling is sufficient to quickly discover all of the layer’s
partition.

input dim \width K=16 K=32 K=64 K=128 K=256

D=2
enumeration 16 13 71 127 631
sampling 16 ±0 13 ±0 67±0 127±0 611 ±2
samp. found 100% 100 % 94 % 100 % 96 %

D=4
enumeration 54 80 1107 4271 95954
sampling 51 ±0 69 ± 1 866±3 3288±18 70635 ±55
samp. found 94 % 86 % 78 % 77% 73%

D=8
enumeration 24 1242 8396 386566 -
sampling 18 ±0 543±2 2875±5 136748±251 -
samp. found 75 % 44 % 34 % 35 % -

process under which the composition of many layers ultimately
form the global DN’s input space partition. We first recall this
subdivision step in Section 3.1 and summarize the enumeration
algorithm in Section 3.2.



Fig. 2. Depiction of the multilayer case which corresponds to a union of region-constrained hyperplane arrangements and thus which can be
studied directly form the proposed hyperplane arrangement region enumeration. The only additional step is to first enforce that the search takes
place on the restricted region of interest from the up-to-layer-ℓ input space partition. For example on the left column one first obtains the first
layer partition depicted in black. On each of the enumerated region, a subdivision will be performed by the next layer; pick any region of
interest, compose the per-region affine mapping (fixed on that region) with the second layer affine mappings, and repeat the region enumeration
algorithm. This discovers the second subdivision done by the second layer, highlighted in blue in the middle column. This can be repeated to
obtain the subdivision of the third layer, here highlighted in red in the right column.

3.1. Deep Networks are Continuous Piecewise Affine
We specialize the per-layer notations from Section 2 by explic-
iting the layer index ℓ as f (ℓ) for the layer mapping, as θ(ℓ)

for its parameters, and the entire DN’s input-output mapping
is now referred to as fθ : RD 7→ RK with K the output space
dimension. The composition of layers take the form

fθ =
(
f
(L)

θ(L) ◦ · · · ◦ f
(1)

θ(1)

)
, (4)

where each layer mapping f (ℓ) : RD(ℓ) 7→ RD(ℓ+1)

produces
a feature map; with D(1) ≜ D and D(L) ≜ K; with mapping
given by Eq. (1), and h(ℓ) denoting the pre-activation map of
layer ℓ. A key result from [20, 7] is the DN mapping is itself
defined on a partition as in

fθ(x) =
∑
ω∈Ω

(Aωx+ bω)1{z∈ω},

which is known to be recursively built by each layer subdivid-
ing the previously built partition of the space [21].

3.2. Enumerating Union of Hyperplane Arrangements
Considering an arbitrarily deep model can be tackled by un-
derstanding the recurrent subdivision process of a two hidden
layer DN and applying the same principle successively. In
this setting, notice that for the (two-layer) DN to be affine
within some region ω of the DN’s input space, each layer
must stay affine as well. By composition the first layer stay-
ing linear does not ensure that the DN stays linear, but the
first layer being nonlinear does imply that the entire DN is
nonlinear. From that, we see that the first layer’s partition
are “coarser” the the entire DN’s partition regions. More pre-
cisely, and following the derivation of [21], we obtain that
each layer is a recursive subdivision of the previously build

partition when in our case we need to search for each region
ω of the first layer’s partition the regions within it where the
second layer stays linear. As a result, the proposed single hid-
den layer enumeration method from Section 2 can be applied
recursively as follows. First, compute the first layer partition
enumeration. Then, for each enumerated region with corre-
sponding sign pattern q, define a new single layer model with
h(x) ≜ σ(W (2) diag(q)W (1)x + W (2)(q ⊙ b(1)) + b(2)

and within ω apply the single layer enumeration; repeating the
process for all regions –and corresponding sign patterns q of
the previously found first layer partition. This enumerates the
partition of (f (2) ◦f (1)), and the same process can be repeated
as many times as there are layers in the DN; as illustrated in
Fig. 2.

4. CONCLUSION AND FUTURE WORK

In this paper, we provided the first exact enumeration method
for Deep Networks partitions that relies on the existing highly
efficient enumeration method of hyperplane arrangements. In
fact, both the hallow and deep architectures produce partitions
that correspond to hyperplane arrangements or union of re-
stricted hyperplane arrangements. A crucial finding that was
enabled by the proposed method is that sampling-based re-
gion enumeration, which is the only strategy used in current
research studies dealing with DNs and affine splines, is in fact
relatively poor at finding the regions of the DN’s partition. In
particular, when using such sampling to estimating some sensi-
tive statistics e.g. the volume of the smallest region, sampling
is biased and should be avoid in favor of an exact enumeration
method.
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