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ABSTRACT

We present a variational message passing (VMP) approach
to detect the presence of a person based on their respira-
tory chest motion using multistatic ultra-wideband (UWB)
radar. In the process, the respiratory motion is estimated
for contact-free vital sign monitoring. The received signal
is modeled by a backscatter channel and the respiratory mo-
tion and propagation channels are estimated using VMP. We
use the evidence lower bound (ELBO) to approximate the
model evidence for the detection. Numerical analyses and
measurements demonstrate that the proposed method leads
to a significant improvement in the detection performance
compared to a fast Fourier transform (FFT)-based detector
or an estimator-correlator, since the multipath components
(MPCs) are better incorporated into the detection procedure.
Specifically, the proposed method has a detection probabil-
ity of 0.95 at —20dB signal-to-noise ratio (SNR), while the
estimator-correlator and FFT-based detector have 0.32 and
0.05, respectively.

Index Terms— Ultra-wideband radar, occupancy detec-
tion, variational message passing, vital sign estimation.

1. INTRODUCTION

Future cars will be required to detect if they are occupied
when the car is being locked to prevent the confinement of
small children, which makes detecting the presence of peo-
ple a safety-critical application [1-3]. The respiratory mo-
tion of the chest provides a dynamic feature used to sepa-
rate the target’s radar response from the strong clutter present
in this use case [4]. We derive a Kronecker-factorized sig-
nal model for vital sign estimation in (strong) clutter using
ultra-wideband (UWB) radar and present a variational mes-
sage passing (VMP) algorithm [5, 6] to detect the presence of
people and estimate the respiratory chest motion. An advan-
tage of the derived model is, that it is linear in both the res-
piratory motion as well as the propagation channel and, thus,
the message passing equations can be solved analytically.
Recent approaches to detect and estimate the respiratory
chest motion based on radar responses are mostly based on
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the intuition that the respiratory motion is periodic. They ap-
ply techniques such as fast Fourier transform (FFT) process-
ing, principal component analysis or energy detection [7—11].
However, this assumption is easily violated, e.g. by infants
who regularly experience apnea (short pauses with no respi-
ration) [12]. This is especially important, considering that in-
fants are very hard to detect in the first place, due to the small
radar cross section and respiratory motion amplitude. Other
works such as [13, 14] rely on a data-driven approach, which
is typically limited by the small and heterogeneous data sets
available. None of these works explicitly models the propaga-
tion of multipath components (MPCs). However, in a tightly
enclosed space, such as the interior of a car, the MPCs that
interact with the target carry additional information and can
be used to increase the signal-to-noise ratio (SNR), which is
of critical importance in the given use case. In this work, we
apply VMP to improve upon the results of [4], which already
incorporates MPCs into the detection.

Notation: We define I, to be the n x n identity matrix
and 1 = [1, 1, ---, 1]T to be a vector of ones with appro-
priate length. We use ® and ® to denote the Hadamard (el-
ement wise) and Kronecker product of two vectors or matri-
ces, respectively. The real operator and matrix trace opera-
tor are denoted as Re{-} and tr(-). We use N (alb, C) and
CN (a|b, C) to denote that the vector a is distributed with a
(complex) multivariate Gaussian distribution with mean b and
covariance matrix C'. Similarly, Ga(a|d, e) is used to denote
that the variable a is gamma-distributed with shape parameter
d and rate parameter e. The differential entropy of the dis-
tribution g(x) is denoted as H(p) and the expectation of the
function f(x) with respect to g(x) as <f(a:)>q(w).

2. SIGNAL MODEL

We consider the case of a person sitting in a car, without in-
tentional body movement. However, the chest of the person
expands and contracts continuously due to the persons respi-
ration. We propose to model the chest movement in direction
of the antenna b,(t) as the realization of a zero-mean Gaussian
random process. We aim to detect the presence of the person
and estimate b;(t) using multistatic UWB radar signals.

Let s be N samples, equally spaced with spacing Af =
fs/N, of the complex baseband representation of the trans-



mit pulse s(f) centred at carrier frequency f.. Several repe-
titions of the pulse are transmitted at times ¢ = mTiep, m €
{0, 1, -+, M — 1} from the transmit antenna. After propa-
gating over K time-varying channels with frequency response
hy(t), each signal 74, = hy(MmTIiep) © § + Wy, received
at receiving antenna k at repetition m is corrupted by noise
Wy;,m- The noise samples wy, ,,, are generated by a noise pro-
cess Wi, 1(f), which is modeled as additive white Gaussian
noise with double-sided power spectral density Ny /2, and is
assumed to be independent across m, k and f. Thus, wy, ., is
a circular symmetric complex Gaussian random vector with
covariance Cy, = A~ ' Iy and precision A = T/ Nj.

In order to remove the clutter, the signals from all anten-

nas at time m are stacked 7, = [, T3 s 0, Tl ]t
M-1

and the mean © = ﬁ Zm:O T, over m is subtracted 7, =
., — 7. Finally, the signals are stacked into a large column
vector 7 = [rd, 71, -+ 71, |]T. As we derive in the fol-
lowing subsection, the time-varying part of the received signal

T =b®hs+w @))
is given as the product of the respiratory motion b, =
[6:(0), b(Trep), -+ b ((M — 1)TrepﬂT € RM and a stacked

T

channel vector hy = [hg 1, hg o, -, h;{K]T in additive white
Gaussian noise w = [w{ 5, w3 g, -+, Wi 1 4]".

Since we apply a frequency selective prior to b, the re-
sulting covariance Cy, is not full rank. Thus, all computa-
tions are performed in the eigenspace b = U b, correspond-
ing to the eigendecomposition Cy,, = UC,UT, where C,
is a diagonal matrix with all L non-zero eigenvalues of C},
on its main diagonal and U is a matrix with the correspond-

ing eigenvectors. Let e, = [0,---,0,1,0,---,0]T be a
vector of length K with all zeros except for an 1 at the k-th
position and wy, = [w] ,, w} |, -+, wi ;47,7 can be

expressed either as a linear function of the breathing signal
b, = Ub given the block-diagonal matrix H = Iy ® hg
and the signal received at each antenna k after clutter removal
Tar = ((ef ® Iy) ® Ip)7 as a linear function of kg, given
the block-diagonal matrix B = Ub ® Iy:

r=HUb+w 2)

TAk = Bhsﬁk + wg.

Assuming independent channels hy j, the likelihood of re-
ceiving 7 is p(7|b, hs, \) = CN (f ‘ HUDb, A‘lIKNM) =
1/, CN (#ar | Bhoy, A\ ) -

2.1. Propagation environment and target model

The propagation environment is modeled as a time-varying
backscatter channel [15] with frequency response

hi(t) = hyi(t) © by + he g (3)

for each receiving antenna. Introducing briefly the target
channel hy 1 (t), the MPCs which interact with the target are
modeled by a forward-backward channel hg, j; = ht i © by i,
which is the product of a forward channel hy; covering the
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Fig. 1. Receive signal R of a UWB radar measurement of an
adult sitting on the back seat of a car.

propagation from the transmit antenna to the target and a
backward channel hy j covering the propagation from the
target back to the receive antenna. All other received MPCs
are termed as clutter and are modeled by the frequency re-
sponse hc ;.. Since the target is assumed to be stationary, the
channels hyj, hy 3 and h¢ . can be assumed time-invariant
as long as the respiratory motion b(¢) is much smaller than
the smallest wavelength of the transmit signal.

The target is modeled as a single point target with a
time-varying baseband frequency response hix(f,t) =
ape 72 Hf)mr®) - representing the reflection of the in-
coming signal by a coefficient o, € C and a time-varying
delay 7, x(t). Let ¢ be the propagation speed of the sig-
nal and 0 < pi < 2 a coefficient depending on the an-
gles between the target and the transmitting and receiving
antennas, 7y, 5(t) = pg b(t)/c. Using a first order Taylor-
approximation e /27 (/Hf)n ()~ 1 — gon(f + fo)mk(t),
the sampled frequency response of the target changes over
time as h(t) = o (1 — j2mpy f+cf°1b(t)). Let hyy =
—j2mprag/c- b © (f + fe1) © s. The signal received at
antenna k at time m is 7y, j, = b(mTiep)- s+ W, 1 +const.
Thus, after removing the constant term we arrive at (1).

Figure 1 shows a radar measurement from the experi-
ments described in section 4. The receive signal is stacked
into a matrix R = [#, #1, -~ , #a/—1]. To highlight the
MPCs, the channel is transformed to time domain by the
inverse-FFT matrix V', where the [k, n]-th element of V is
defined as ﬁej 2mnk/N Each row is approximately a scaled

version of the row containing the line-of-sight (LoS), as pre-
dicted by the derived signal model. The energy in the MPCs
is used to increase the detection performance.

3. VARIATIONAL MESSAGE PASSING

Obtaining the maximum a-posteriori solutions for b and hy is
computationally infeasible due to the large dimensions of b
and hyg. Therefore, we apply a structured mean-field approach
to approximate the posterior distribution p(b, hg, A\|F)
p(7|b, hs, \)p(b)p(A) Hszl p(hs k), which is illustrated
in Fig. 2, with a factorized distribution ¢;(b, hs,\) =
ab(b)gx(N) Hle gnx(hs i) [16]. VMP is applied to mini-
mize the Kullbach-Leibler divergence Dy (1 [p(b, ks, A|T))
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Fig. 2. Factor graph of the posterior distribution p(b, hs, A|7).

of the true posterior p(b, hg, A\|7*) from g1 (b, hs, \) by max-
imizing the evidence lower bound (ELBO) [5, 17-20]. The
ELBO is maximized using coordinate ascent, iteratively
maximizing the ELBO with respect to one distribution
4 € Q=1{ab, 9\, 1, **, Ghi} bY

g o< exp {(Inp(b, hs, A7)} @

while keeping the remaining distributions ¢; = [| L
fixed. Note, that the fixed point can be found anafyti-
cally, if conjugate priors are used. Therefore, we assume
zero-mean Gaussian priors p(b) = N (b0, Cy,) and
p(hsi) = CN (hgy |0, Ch, ) for the respiratory motion
and channel vectors, respectively, and Jeffrey’s prior p(\)
A~ for the noise precision A. The resulting distributions
w(b) = N(b|b, Cy), gni(hsi) = CN(hsi | hsi, Chi),
and ¢\(\) = Ga()\|KNM, MA) are fully described by
the parameters 5, C’b, ﬁs,k, CA’h’k and MA = KNM/S\l. Let

By = (G460 and B = S5, () + R
the following messages are computed at iteration ¢:
Ali - Sl=1] plie -1
Ck = (G + N TTE ) ®)
Al = Xi7Ue) Bl-Utg,, (6)
¢l = (et + 2 EN )T (7)
bl = 23/ EM U R A HF) (8)
N0 KNM
W= —— . )
|72 — 261 TUTRe{ HI 7Y + B
After initializing the messages as A = KNM/|7|2,
C’t[,o] = Ch,, and bl as a realization drawn from the prior

p(b), equations (5) trough (9) are iterated until the messages

are converged. Furthermore, CA'IEZ] is calculated by adding a
scaled identity matrix to the inverse prior Cy_ !, Therefore,
the eigenvectors U do not change throughout the iterations
and can be precomputed based on the chosen prior C, .

To keep the notation concise, we refrain from explicitly
writing iteration indices in the remainder of the paper, refer-
ring to the respective values after they are converged.

3.1. Detection

In order to detect the presence of a person, we need to
distinguish between two nested models Hy and 7, with
corresponding likelihoods: p(7|b = 0,hy = 0,\,Ho) =

CN (7|0, A= I npr) of an empty car, and p(7|b, hs, A, H1) =
CN(F|HUb, A" Ik nyy) if a person is present.  Since
the ELBO, is a lower bound on the logarithmic model ev-
idence L£(g;) < Inp(H;|7), we approximate the log odds
ratio as In 272U% ~ £(q;) — £(qo), where the ELBO is

p(HolT)
given as L(g;) = <1np(b, hS7)\’Hj|7:)>qJ-(b,hs,)\) + H(qg;)
for j € {0, 1} [5]. Since qo(b, hs,\) = go(\) depends
only on one parameter, we do not need an iterative update
scheme and the ELBO L(qo) is maximized by ¢o(A) =
Ga(\ | KNM, ||#]|?), resulting in Ao = K NM/||#||2. Spe-
cial considerations must be made regarding the improper
prior p(\) o< A~1. Using a proper prior p(\) = Ga(\|d, e)
and taking the limit as d, e — 0, the test decides for H; if
5 K
(NM —1)In A1 _ > [RCy s + 1(CL N G
0 k=1

1roq o1s o
= 5[67Cy, "o+ (G Cy)] + H(ar) — H(go) > (10)
is larger than the detection threshold ~.
4. RESULTS

To evaluate the performance of the devised algorithm, we
consider the case of a single target sitting in a car. A raised-
cosine pulse with a bandwidth of 500 MHz and a roll-off
factor of 0.5 at a centre frequency of f. = 6.5GHz is
transmitted every T, = 0.1s during a measurement du-
ration of 10s, corresponding to the UWB channel 5 in [21].
The forward and backward channels h; and h;, are mod-
eled with an LoS component with power Ep.s at a delay
of 9 = 1m/c. The LoS component is followed by a
diffuse multipath with exponentially decaying power de-
lay profile with decay constant 7y. Thus h; and h, are
described by the covariance Ci[n,n'] = Cy[n,n'] =
[ELOS 4 EDM (1 +]27T7}Af(n _ n/))*l} eijWToﬁf(nfn/)_
We choose 77 = 20ns and Kj,s = EL"S = 0.75, since
these values were observed by test measurements. If the
delay of the LoS component is known, the prior covari-
ance Cy, can be calculated from Cy,[n,n']. However, we
do not assume the distance to the target to be known a-
priory. Therefore, we choose the covariance for the forward-
backward channel to follow the shape of a gamma distribution
Cr[n,n'] oc (14j2n7Af(n—n'))"". We selecta = 1+2%
such that the peak (in time domain) corresponds to the ex-
pected target distance. This choice of prior enhances the de-
tection performance compared to a flat prior by incorporating
the decay constant of the channel without requiring the exact
target distance to be known. The typical respiratory frequency
for an adult is between 9 and 21 breaths per minute [22],
where as the respiratory frequency of babies can go as high
as 60 breaths per minute [12]. Therefore, we assume a prior
covariance C}, with a rectangular double sided power spectral
density Sy(f) = m for fomin < |f| < fo.max and O
elsewhere, and select fy min = 9/60Hz and fi, max = 1 Hz.
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Fig. 3. Detection performance of the VMP-based detector
simulated data (left) and measurements (right).

To evaluate the performance, a Monte-Carlo simulation

2 2
with 10° runs was performed at each SNR = W
from —30dB to 10dB in 0.5dB steps considering a mono-
static setup. The threshold for all detectors was set such that
a constant false alarm rate of pgs = 0.01 was achieved at
each SNR value. As comparison, we evaluated the detec-
tion performance of an estimator-correlator, which models
7 as a Gaussian process to incorporate MPCs into the de-
tection [4], and an FFT-based detector which computes the
FFT over the rows of the matrix V R and compares the peak
against a threshold. For the FFT-based approach the channel
is transformed to the time domain to concentrate the signal
energy in the delay bin corresponding to the LoS component
for easier detection. However, no MPCs are incorporated in
the detection. The results are depicted in Fig. 3. The pro-
posed VMP-based algorithm has a better detection rate com-
pared to the two other methods, even when using the modi-
fied prior which does not require a-priory knowledge of the
distance to the target. Specifically, at an SNR of —20dB,
the VMP-based detection achieves a detection rate of approx-
imately 0.95 while the estimator-correlator achieves 0.32 and
the FFT detector achieves 0.05 in case the target distance is
not known. This difference in performance can be explained
by the different level of incorporation of the signal model
into the detection: The VMP-based detector incorporates the
signal model more rigidly in the detection compared to the
estimator-correlator which only accounts for the correlation
between different columns of the matrix R, or the FFT-based
detector which does not account for MPCs at all.

A measurement campaign including 34 participants (6 fe-
male and 28 male) was performed during which 177 minutes
of data with a sample rate of T,,, = 0.1s have been col-
lected using a multistatic setup with one transmit and two re-
ceive antennas. The participants were instructed to sit motion-
less in the car while breathing normally. The measurements
were performed using an M-sequence channel sounder in a
Seat Leon and a Citroen Picasso. The measurement equip-
ment including channel sounder, cables and connectors has
been calibrated before the measurement and the same trans-

Detection Probability

O FFT,K =2

e — -20 -15 -10
SNR in dB

compared to an estimator-correlator (EC) and FFT detector on

mit pulse was used as in the simulations. The data was split
in to non-overlapping chunks of 10s length, for a total of
481 measurements. For each SNR value, 100 independent
noise realizations were added. The resulting detection per-
formance is shown in Fig. 3 for either both receive antennas
(K = 2) or considering only one receive antenna (K = 1).
The FFT-based approach performs significantly better on the
measured data compared to the simulated data, since the res-
piratory motion of adults is closer to a periodic signal and has
less randomness than the Gaussian process used in the sim-
ulations. Although the performance difference between the
VMP-based approach and the other methods is less than in
the simulations, the best detection probability is still achieved
by the VMP-based detector.

5. CONCLUSION

We present a novel VMP-based approach to detect the pres-
ence of a person by their respiratory chest motion using
UWRB radar signals. The devised algorithm significantly out-
performs the comparison methods on simulated as well as
measured data. The superior performance of the presented
detection algorithm is achieved trough the use of MPCs,
which are shown to carry a significant amount of signal
energy in small spaces, such as the interior of a car. Further-
more, deviations from a strictly periodic respiration pattern,
such as pauses with different length in between breaths do not
impact the performance of the devised algorithm, since the
respiratory motion b(¢) is modeled as a random process and
not as a periodic function as e.g. in the FFT-based detection
approach. Additionally, the devised algorithm can be used for
contact-free vital sign estimation since the respiratory chest
motion is estimated as part of the algorithm. However, the
received signal 7 depends on the product of b and hs which
results in an ambiguity in the sign of b and h.

Since many future cars will be equipped with UWB
nodes, e.g. as part of the keyless entry system, the developed
algorithm provides occupancy sensing capabilities to these
cars without the need and increased manufacturing costs of
dedicated sensors.
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