
ar
X

iv
:2

30
3.

00
16

0v
1 

 [
m

at
h.

ST
] 

 1
 M

ar
 2

02
3

ON PARAMETRIC MISSPECIFIED BAYESIAN CRAMÉR-RAO BOUND:
AN APPLICATION TO LINEAR GAUSSIAN SYSTEMS

Shuo Tang, Gerald LaMountain, Tales Imbiriba, Pau Closas

Dept. of Electrical & Computer Engineering, Northeastern University, Boston, MA (USA)

ABSTRACT

A lower bound is an important tool for predicting the performance

that an estimator can achieve under a particular statistical model.

Bayesian bounds are a kind of such bounds which not only utilizes

the observation statistics but also includes the prior model informa-

tion. In reality, however, the true model generating the data is either

unknown or simplified when deriving estimators, which motivates

the works to derive estimation bounds under modeling mismatch sit-

uations. This paper provides a derivation of a Bayesian Cramér-

Rao bound under model misspecification, defining important con-

cepts such as pseudotrue parameter that were not clearly identified

in previous works. The general result is particularized in linear and

Gaussian problems, where closed-forms are available and results are

used to validate the results.

Index Terms— Model misspecification, Bayesian bound,

Cramér-Rao Bound, estimation theory.

1. INTRODUCTION

Parameter estimation is at the core of many statistical signal pro-

cessing and machine learning disciplines, with applications in many

practical problems such as positioning, navigation, wireless commu-

nication, image process, etc. The study of unbiased estimators led

to the derivation of different bounds on it’s variance [1, 2]. Such

bounds provide a benchmark to assess or compare the performance

of estimators, as well as, characterizing the best attainable perfor-

mance given a model and data distribution. These bounds can be

classified into two categories: classical and Bayesian [3]. Classi-

cal bounds include the well-known Cramér-Rao bound (CRB), the

Bhattacharyya Bound [4] and the the Barankin bound [5]. In the

category of Bayesian bounds we can find the Bayesian Cramér-Rao

bound (BCRB) [1, 2, 6], the Bayesian Bhattacharyya Bound [4], the

Weiss-Weinstein bound [7] and the Ziv-Zakai bound [8].

In this paper, we are interested in the Bayesian CRB, which as-

sumes a general statistical model with unknown and random vector

parameter ψ = (ψ1, . . . , ψnψ )
⊤∈ R

nψ×1, such that the model is

characterized by its a priori and likelihood distributions

M∗ = {x|ψ ∼ p∗(x|ψ), ψ ∼ p(ψ) : ψ ∈ Ψ ⊂ R
nψ} (1)

respectively. For any unbiased estimator of ψ, denoted as ψ̂(x), the

BCRB states that

Ex,ψ

{(

ψ̂(x)−ψ
)(

ψ̂(x)−ψ
)⊤}

− J−1 ≥ 0 , (2)

where the inequality involving the estimation error covariance de-

notes that the left-hand side is a positive semidefinite matrix. This

result can be used to lower bound the terms in the estimation error
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covariance Ex,ψ
{(

ψ̂(x)−ψ
)(

ψ̂(x)−ψ
)⊤}

. In (2), J ∈ R
nψ×nψ

denotes the so-called Bayesian Fisher Information Matrix (BFIM)

J = Ex,ψ

{(

∂

∂ψ
ln p(x|ψ)

)(

∂

∂ψ
ln p(x|ψ)

)⊤}

+ Eψ

{(

∂

∂ψ
ln p(ψ)

)(

∂

∂ψ
ln p(ψ)

)⊤}

= JD + JP , (3)

which is composed of the Fisher Information Matrix (JD , account-

ing for the information onψ from the data) and the prior information

matrix (JP , accounting for the a priori on ψ).

One major limitation of these theories is that these lower bounds

are derived under the assumption that the true model (1) which gen-

erated the observations is known. However, such knowledge of the

true model is not always available [9], either because the true under-

lying model is complex to characterize or because simplified mod-

els are preferred for the sake of tractability. In such situations the

bounds mentioned above may become loose or even invalid since

the estimators are derived based on a statistical model M that dif-

fers from the true underlying model M∗. In this context, model M
is often referred to as misspecified or mismatched [10, 11]. Recently,

there has been an increased interest in deriving bounds for the sort

of mismatched problems described above. These works extend the

theories of non-Bayesian bounds, mostly CRB-type, to the case of

model misspecification where the most prominent works are in the

area of Misspecified CRB (MCRB) [12].

In that context, in a non-Bayesian setting where parameters are

considered deterministic, an estimator designed optimally under M
(e.g. the quasi maximum likelihood estimator, QMLE) is known

to asymptotically converge to the so-called pseudotrue parameter,

which is the parameter in M that minimizes its Kullback-Leibler

(KL) divergence with respect to M∗. As far as the authors know,

Huber [13] was the first at investigating the behavior of MLE under

model misspecification and discussed the concept of the pseudotrue

parameter. Based on these ideas, the seminal work of Vuong [10]

was the first to explore CRB-type lower bounds on estimation ac-

curacy under model mismatches. This work used implicit function

theory to provide the results and clarified the necessary assumptions

for its derivation, which was inherited by many follow up works that

appear only recently. For instance, Richmond and Horowitz [11]

formalized the theory of MCRB by employing minimum norm the-

orem and the covariance inequality. Despite of the similar form of

the bound, [11] resulted in a more restricted class of the suitable es-

timators than Vuong’s original work [10] did due to the employed

constraints on the minimum norm theorem. However, that work ac-

tually advanced the understanding of the result in [10] and provided

a valid bound for any unbiased estimator of the pseudotrue. A de-

tailed comparison of those two works can be found in [14], which

also provided great inspiration to this paper. Besides, the MCRB for

parameter estimation has been recently used in many applications,

http://arxiv.org/abs/2303.00160v1


such as sparse Bayesian learning [15], radar communications [16],

or in the general class of elliptically distributed distributions [17].

In these works, the pseudotrue and the estimator are considered un-

known but deterministic parameters and thus the bounds are used

to bound estimators that are misspecified unbiased (MS-unbiased),

such as the QMLE.

Less attention has been given to the study of estimation bounds

under Bayesian mismatched models. In the review paper by Fortu-

nati et al. [12], this idea is discussed and deemed of relevance. In

many situations, it is natural to account for the parameter’s prior in-

formation in deriving an estimator, which adds an extra source of

information but potentially adds another mismatch. Some works in-

vestigated the derivation of Bayesian estimation bounds under model

mismatch, such as CRB-type [18] or ZZB-type [19, 20], although a

general framework is still missing.

In this paper, we provide a derivation of a Bayesian CRB

for mismatched models, which we term as Misspecified BCRB

(MBCRB). The derivation is done considering a parametric trans-

formation of the true parameter space into the parameter space of the

assumed model, similarly to the parametric approach in [14]. This

provides a CRB-type result where the BCRB of the true parameters

is mapped to the MBCRB of interest. In doing so, we propose a

definition for the pseudotrue parameter, which is different from the

one considered for MCRB as it accounts for the joint distribution of

the assumed model. The bound is valid for MS-unbiased estimators

with respect to such pseudotrue. The general MBCRB expression

is particularized for linear and Gaussian models, where closed-form

expressions are obtained. The bound is validated on synthetic data

where various sorts of model mismatches are tested, showing tight

prediction capabilities of the MBCRB.

2. MISSPECIFIED BCRB

In this section we derive a parametric misspecified BCRB. For such,

let us consider that i) (1) describes the true model, parameterized by

ψ; and ii) the assumed, potentially misspecified, model is given by

M = {x|θ ∼ f(x|θ), θ ∼ f(θ) : θ ∈ Θ ⊂ R
nθ} (4)

where θ = (θ1, . . . , θnθ )
⊤ ∈ R

nθ×1 denotes the unknown random

parameter which the estimator is attempting to infer from the avail-

able data x ∈ R
nx×1 and the assumed statistical model M. Notice

thatψ and θ do not necessarily belong to the same parameter space,

although they can in certain situations, as explained in [12].

We define the pseudotrue parameter as the parameter vector in

Θ which minimizes the KL divergence between the true distribution

and the assumed joint distribution f(x,θ). The true model is set to

be p(x|ψ) as Richmond and Fortunati did in [11, 12], resulting in a

pseudotrue that depends on the actual realization of ψ:

θ0(ψ) = argmin
θ

D

(

p(x|ψ)||f(x,θ)

)

= argmin
θ

(

− Ex|ψ

{

ln f(x,θ)

})

, (5)

which is slightly different to the pseudotrue parameter defined in

other the MCRB works, [10, 11, 14, 12]. Based on this pseu-

dotrue, this paper aims to find a lower bound for Ex,ψ

{(

θ̂(x) −

θ0(ψ)
)(

θ̂(x) − θ0(ψ)
)⊤}

given that in this case there is a prior

distribution on the assumed model parameter. Additionally, (5) is a

convenient choice as it can be shown that relevant estimators such as

the maximum a posterior (MAP) are asymptotically achieving that

quantity, thus being MS-unbiased with respect to θ0(ψ).
Before being able to state the main MBCRB results, there are

two assumptions that are imposed to the true model, which are com-

mon assumptions in the BCRB context. Additionally, an assump-

tion on the class of estimators the bound is applicable to is also

made. Namely, i) the derivative of the log-likelihood is zero-mean,

Ex|ψ

{

∂
∂ψ

ln p(x|ψ)

}

= 0; ii) the prior distribution for ψ is such

that p(ψi = ψi,min) = p(ψi = ψi,max) = 0, where ψ ∈ Ψ =

Ψ1×· · ·×Ψnψ with Ψi , [ψi,min, ψi,max] being the value range for

each ψi, i ∈ {1, 2, . . . , nψ} and ψi,min and ψi,max are independent

of ψ; iii) the estimator is MS-unbiased with respect to the pseu-

dotrue parameter, that is Ex|ψ
{

θ̂(x)
}

= θ0(ψ). Furthermore, the

following Lemmas summarize two results used in proving Theorem

1, which states the main MBCRB result.

Lemma 1. For i ∈ {1, 2, · · · , nψ} and j ∈ {1, 2, · · · , nθ}
∫

Ψ

θ̂j(x)
∂

∂ψi
p(x,ψ)dψ = 0 (6)

where θ̂ = (θ̂1, . . . , θ̂m)⊤ ∈ R
nθ×1 is the estimator of θ0(ψ).

Proof. Note that
∫

Ψ

∂
∂ψi

p(x,ψ)dψ = ∂
∂ψi

p(x) = 0. Thus,
∫

Ψ
θ̂j(x)

∂
∂ψi

p(x,ψ)dψ = θ̂j(x)
∫

Ψ

∂
∂ψi

p(x,ψ)dψ = 0.

Lemma 2. Given θ0(ψ) = (θ0,1(ψ), . . . , θ0,nθ (ψ))
⊤ ∈ R

nθ×1,

∫

Ψ

θ0,j(ψ)
∂

∂ψi
p(x,ψ)dψ = −

∫

Ψ

∂θ0,j(ψ)

∂ψi
p(x,ψ)dψ (7)

Proof. We first define ψ−i as the vector containing all the elements

in ψ except for ψi, such that
∫

θ0,j(ψ)
∂

∂ψi
p(x,ψ)dψ =

∫∫

θ0,j(ψ)
∂

∂ψi
p(x,ψ)dψidψ−i

then, integrating by parts the integral over ψi, we obtain
∫∫

θ0,j(ψ)
∂

∂ψi
p(x,ψ)dψidψ−i

=

∫ (

θ0,j(ψ)p(x,ψ)

∣

∣

∣

∣

ψi=ψi,max

ψi=ψi,min

−

∫

∂θ0,j

∂ψi
p(x,ψ)dψi

)

dψ−i

=−

∫

∂θ0,j(ψ)

∂ψi
p(x,ψ)dψ, (8)

Notice that the term evaluating the joint distribution of x and

ψ at the boundaries of Ψi is zero according to the second as-

sumption made on a priori distribution p(ψ), since p(x,ψ) =
p(x|ψ)p(ψ−i|ψi)p(ψi).

Theorem 1 (Misspecified Bayesian CRB). Given the true model

M∗ in (1) parameterized by ψ and the assumed model M in (4)

parameterized by θ, the error covariance of any MS-unbiased esti-

mator satisfies that

Ex,ψ

{(

θ̂(x)− θ0(ψ)
)(

θ̂(x)− θ0(ψ)
)⊤}

− Eψ

{

∂θ0(ψ)

∂ψ

}

J
−1

Eψ

{

∂θ0(ψ)

∂ψ

}⊤

≥ 0 , (9)

where the inequality indicates positive semidefiniteness and J is the

BFIM of ψ in (3).



Proof. According to Lemmas 1 and 2, we have that for the j-th ele-

ment in Θ
∫

Ψ

(

θ̂j(x)−θ0,j(ψ)
) ∂

∂ψi
p(x,ψ)dψ=

∫

Ψ

∂θ0,j(ψ)

∂ψ
p(x,ψ)dψ.

which in vector case is such that

∫

Ψ

(

θ̂(x)− θ0(ψ)
)

(

∂

∂ψ
p(x,ψ)

)⊤

dψ =

∫

Ψ

∂θ0(ψ)

∂ψ
p(x,ψ)dψ .

Assuming x is continuous in its domain, integrating with respect

to x gives

∫∫

(

θ̂(x)− θ0(ψ)
)

(

∂

∂ψ
ln p(x,ψ)

)⊤

p(x,ψ)dψdx

=

∫∫

∂θ0(ψ)

∂ψ
p(x,ψ)dψdx, (10)

where the integral limits are neglected for a cleaner notation. We

can multiply both side by two arbitrary vectors a ∈ R
nθ×1 and

b ∈ R
nψ×1

∫∫

a
⊤(
θ̂(x)− θ0(ψ)

)

(

∂

∂ψ
ln p(x,ψ)

)⊤

bp(x,ψ)dψdx

= a⊤

∫∫

∂θ0(ψ)

∂ψ
p(x,ψ)dψdxb (11)

such that the above equation becomes a scalar identity and we can

utilize the Cauchy-Schwarz inequality

∫∫

a
⊤(
θ̂(x)− θ0(ψ)

)(

θ̂(x)− θ0(ψ)
)⊤
ap(x,ψ)dψdx·

∫∫

b
⊤

(

∂

∂ψ
ln p(x,ψ)

)(

∂

∂ψ
ln p(x,ψ)

)⊤

bp(x,ψ)dψdx

≥

(

a
⊤

∫∫

∂θ0(ψ)

∂ψ
p(x,ψ)dψdxb

)

2

. (12)

We can rewrite the expression identifying terms

a
⊤
Ex,ψ

{(

θ̂(x)− θ0(ψ)
)(

θ̂(x)− θ0(ψ)
)⊤}

a · b⊤Jb

≥

(

a
⊤
Eψ

{∂θ0(ψ)

∂ψ

}

b

)2

, (13)

where

J = Ex,ψ

{(

∂

∂ψ
ln p(x,ψ)

)(

∂

∂ψ
ln p(x,ψ)

)⊤}

is exactly the BFIM defined in (3), after making use of the first reg-

ularity condition Ex|ψ

{

∂
∂ψ

ln p(x|ψ)

}

= 0 such that there is no

cross-terms between likelihood and a priori distributions.

Since a and b are arbitrary, we consider

b = J−1
Eψ

{

∂θ0(ψ)

∂ψ

}⊤

a (14)

and substitute it in (13)

a
⊤
Ex,ψ

{(

θ̂(x)− θ0(ψ)
)(

θ̂(x)− θ0(ψ)
)⊤}

a

× a⊤
Eψ

{

∂θ0(ψ)

∂ψ

}

J
−1

Ex,ψ

{

∂θ0(ψ)

∂ψ

}⊤

a

≥

(

a
⊤
Eψ

{

∂θ0(ψ)

∂ψ

}

J
−1

Eψ

{

∂θ0(ψ)

∂ψ

}⊤

a

)

2

(15)

to finally obtain

a
⊤
Ex,ψ

{(

θ̂(x)− θ0(ψ)
)(

θ̂(x)− θ0(ψ)
)⊤}

a

≥ a⊤
Eψ

{

∂θ0(ψ)

∂ψ

}

J
−1

Eψ

{

∂θ0(ψ)

∂ψ

}⊤

a , (16)

from which the main result of the Theorem 1 follows.

The MBCRB in (9) appears in a sandwich form consisting of

the BFIM inverse in the middle and two terms on the both sides

involving the parametric transformation from Ψ to Θ through the

pseudotrue parameter, which is similar to the MCRB results [11, 12,

14]. Notice that i) the MBCRB is accounting for the prior on ψ and

θ through the expectations in (9) but also implicitly via θ0(ψ); and

ii) when the model is correctly specified the pseudotrue coincides

with θ0(ψ) = ψ, and MBCRB(θ = ψ) = BCRB(ψ) = J−1.

3. APPLICATION TO LINEAR AND GAUSSIAN SYSTEMS

In this section we particularize the MBCRB result to bound the spe-

cial class of mismatched linear and Gaussian systems, which are

very common and serve as the foundation of complex system. More

precisely, the true model is generally described by

ψ ∼ N (µψ,Σψ), xn|ψ ∼ N (H∗ψ,Σ∗), n = 1, . . . , N

which generates the observations and from which N samples are

available. The true model is parameterized by {µψ ,Σψ,H∗,Σ∗}.

Conversely, the assumed model is

θ ∼ N (µθ,Σθ), xn|θ ∼ N (Hθ,Σ), n = 1, . . . , N

where we notice that θ may not be in the same parameter space as
ψ, and that the model is parameterized by {µθ ,Σθ,H,Σ}. It can
be shown that the value of θ minimizing the KL divergence between
N (H∗ψ,Σ∗) and N (Hθ,Σ)N (µθ,Σθ) is

θ0(ψ)=

(

NH⊤
Σ

−1H +Σθ
−1

)−1
(

NH⊤
Σ

−1H∗ψ +Σ
−1

θ
µθ

)

, (17)

which is the pseudotrue parameter as defined in (5).
Based on the assumed model and the observation matrix X =

(x1, . . . ,xN), we can derive optimal estimators of θ. For instance,
the MAP estimator becomes

θ̂(X) = argmax
θ

(

ln p(X|θ) + ln p(θ)

)

(18)

=

(

NH⊤
Σ

−1H +Σ
−1

θ

)−1
( N

∑

n=1

H⊤
Σ

−1xn +Σ
−1

θ
µθ

)

,

which is indeed MS-unbiased since Ex|ψ

{

θ̂(X)
}

= θ0(ψ). To

compute the MBCRB for this class of mismatched models we follow

the result in Theorem 1

Ex,ψ

{

(

θ̂(X)−θ0(ψ)
)(

θ̂(X)−θ0(ψ)
)⊤
}

≥ AJ−1
A

⊤
(19)

withA defined as

Eψ

{

∂θ0(ψ)

∂ψ

}

=

(

NH
⊤
Σ

−1
H +Σ

−1

θ

)−1

NH
⊤
Σ

−1
H∗

.
=A (20)

and the BFIM for ψ computed as J = NH⊤
∗ Σ

−1

∗ H∗ +Σ
−1

ψ .



4. SIMULATION RESULTS

We validated the MBCRB results in the linear and Gaussian context

described in Section 3. The particular values of the true model are

such that nψ = 3, with the a priori mean and covariances being re-

spectively µψ = [10, 20, 5]⊤ and Σψ = σ2

ψI = 0.5I , where I

denotes the identity matrix with the corresponding dimension. The

observation model is set toH = h∗I and h∗ = 1. The covariance of

the observed data is Σ∗ = σ2

∗Q, with σ2

∗ = 0.04 andQi,j = ρ|i−j|,
following an order-1 auto-regressive (AR-1) signal model [21], con-

trolled by a correlation parameter ρ = 0.5, leading to a signal-to-

noise ratio of SNR = 34 dB. The specific values of the parameters

in the assumed model are discussed for the different scenarios.

4.1. Comparison of MBCRB and BCRB

In this experiment, the parameters of the misspecified assumed

model are such that µθ = [8, 18, 6]⊤ and Σ = σ2I = 0.1I .

The rest of the assumed parameters coincide with those of the true

model. The Monte Carlo simulations are averaging 105 independent

realizations, where each time N samples are be observed. For the

sake of clarity, the results in Fig. 1 depict the root mean square error

(RMSE) and theoretical bound of the first element in the parameter

vector, that is θ1, for different numbers of samples N . Although

the usual BCRB fails to lower-bound the variance of the estimation

error when low number of samples are available (i.e., the prior plays

a bigger role), the MBCRB can lower-bound it tightly.
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Fig. 1. RMSE vs MBCRB and BCRB as a function of N .

4.2. Extended Biased Bound

Given that in the proposed setup both true and assumed models were

conveniently chosen such that θ and ψ belong to the same vector

space Θ = Ψ, the bound can be extended to bound the covariance

of θ̂ − ψ. Similar to what’s discussed in [11, 17, 12], such bound

involves the MBCRB and an additional term:

Ex,ψ

{(

θ̂(x)−ψ
)(

θ̂(x)−ψ
)⊤}

≥ Ex,ψ

{

∂θ0(ψ)

∂ψ

}

J
−1

Ex,ψ

{

∂θ0(ψ)

∂ψ

}⊤

+ rr⊤, (21)

where the biased term is r = θ0(ψ) − ψ. Under the same param-

eter settings of the previous experiment except for that the number

of samples N is fixed to 40, Fig. 2 shows that the error between

the estimator and the true parameter can be lower-bounded by the

extended biased bound in (21).
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Fig. 2. RMSE vs bound on θ̂ −ψ as a function of N .
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Fig. 3. RMSE vs bound on θ̂−ψ under different model misspecifi-

cations: when varying h (top panel) and varying σ2 (bottom panel).

4.3. Different Levels of model misspecification

A set of experiments are done to compare the RMSE and the bound

on θ̂ − ψ under different levels of model misspecification. For

compatibility, we leverage the same true and assumed models as

described at the beginning of the section except for the following

mismatched parameters. The simulation shown in Fig. 3 (top) is

implemented with number of samples N = 50 and the misspecified

parameter is H = hI for several values of h. The RMSE reaches

the minimum value when h = h∗ = 1, as expected. Similarly, Fig.3

(bottom) shows how the RMSE and bound fluctuate with the vary-

ing covariance of the observation model Σ = σ2I . The simulations

are implemented with N = 500 to get smoother curves. Notice that

since Σ∗ = σ2

∗Q and there is no value of θ that would make the as-

sumed model to be exactly the same as the true model. However, the

bound is able to predict the RMSE for various levels of mismatches

in Σ compared to Σ∗.



5. CONCLUSION

Being able to predict the estimation error of an estimator is impor-

tant for benchmarking and design purposes. This paper extends the

works on CRB-type bounds for misspecified models to a general

Bayesian setting where the parameters of true and assumed models

are assumed random variables. A new possible pseudotrue parame-

ter definition is proposed, accounting for the Bayesian modeling of

interest here, which is fundamental to derive the so-called MBCRB.

The bound is particularized to the case of mismatched linear and

Gaussian models, yielding to closed-form expressions that are sim-

pler to compute and interpret, which can be useful in real-world

(Bayesian) linear regression applications. In cases where true and

assumed parameters belong to the same parameter space, we also

provided an extended biased bound on the error between both which

leverages the previous MBCRB result. Simulation results validates

the proposed MBCRB for a number of misspecified situations.
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