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ABSTRACT
This paper aims to synthesize the target speaker’s speech with de-
sired speaking style and emotion by transferring the style and emo-
tion from reference speech recorded by other speakers. We address
this challenging problem with a two-stage framework composed
of a text-to-style-and-emotion (Text2SE) module and a style-and-
emotion-to-wave (SE2Wave) module, bridging by neural bottleneck
(BN) features. To further solve the multi-factor (speaker timbre,
speaking style and emotion) decoupling problem, we adopt the
multi-label binary vector (MBV) and mutual information (MI) min-
imization to respectively discretize the extracted embeddings and
disentangle these highly entangled factors in both Text2SE and
SE2Wave modules. Moreover, we introduce a semi-supervised
training strategy to leverage data from multiple speakers, including
emotion-labeled data, style-labeled data, and unlabeled data. To bet-
ter transfer the fine-grained expression from references to the target
speaker in non-parallel transfer, we introduce a reference-candidate
pool and propose an attention-based reference selection approach.
Extensive experiments demonstrate the good design of our model.

Index Terms— Expressive speech synthesis, multiple factors
decoupling, two-stage, style transfer, emotion transfer

1. INTRODUCTION
In recent years, neural text-to-speech (TTS) synthesis has made rapid
progress regarding quality and naturalness [1, 2, 3, 4]. With the wide
applications of TTS, there have been increasing demands for robust
expressive speech synthesis systems to provide more human-like
speech in diverse scenarios. In previous works of expressive speech
synthesis, speech expressiveness usually refers to specific speaking
styles or emotional expressions associated with speech [5, 6, 7, 8].

A straightforward approach [9, 10, 11, 12] to synthesize expres-
sive speech for a specific speaker is to train a TTS system with
his/her expressive training speech. However, it can not be gener-
alized to target speakers without expressive training data, which is
hard to obtain for each target speaker. Therefore, transferring emo-
tion or style from a source speaker to target speakers is a feasible
strategy, where the source speaker has expressive speech while the
target speaker only has neutral speech. The key factor for emotion
or style transfer is to decouple the speaker timbre and expressive as-
pects from speech [13, 14, 8, 15]. Speaker timbre essentially reveals
the physiological characteristics of individual’s vocal tract, while
emotion and speaking style are more behavioral. However, it is not a
trivial task as these aspects are highly entangled in the speech signal.
Some works [6, 16, 17] try to disentangle speaker timbre and style
or emotion in the latent space to conduct style or emotion trans-
fer. However, decoupling approaches in latent space usually need
to carefully select an appropriate reference signal during inference.
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These reference-based style transfer methods always face a trade-off
between expressiveness and speaker similarity, which leads to a vast
performance gap between synthetic and natural human speech.

To solve this problem, some articles adopt the neural network
bottleneck (BN) features or Phonetic PosteriorGrams (PPGs) as in-
termediate representations for decoupling. BN features are a set of
activation of nodes over time from a neural network bottleneck layer,
while PPGs are obtained by stacking a sequence of phonetic pos-
terior probabilistic vectors from the neural network. BN features
and PPGs, usually obtained from a well-trained acoustic model in an
automatic speech recognition system, are believed to be linguistic-
rich [18, 19], speaker-independent [20], noise-robust [21], and con-
tain stylistic information such as duration and accent [22]. Leverag-
ing the intermediate representations, the style transfer TTS problem
can be simplified to a two-stage process, where the first stage mainly
manages the style learning from the source speaker while the sec-
ond stage aims at the target speaker timbre modeling. Through such
a two-stage framework, style or emotion transfer can be conducted
without a reference signal during inference. Referee [8] is a repre-
sentative work in this direction that adopts PPGs as the intermediate
representations connecting the two-stage models for cross-speaker
style transfer.

The above style transfer approaches usually have an unclear def-
inition of style and emotion and sometimes consider emotion as
a type of speaking style. Whereas, this indiscriminate treatment
of style and emotion restricts them to be extended to diverse sce-
narios requiring both multiple emotions and styles, which is com-
mon in real applications. Speaking style is a general distinctive
style of speech in different usage scenarios, such as news reading,
storytelling, poetry recitation, and conversation. Even for story-
telling, telling different stories (such as fairy tales and novels) may
use different speaking styles. By contrast, emotion mainly reflects
the mood state of the speaker, related to attitudes and intentions, con-
veyed differently in each utterance, such as happy, angry, sad, etc.
Moreover, different emotions can be expected in different places in
an audio stream with a global speaking style (such as storytelling).

In this paper, we focus on both speaking style and emotion trans-
fer in multi-speaker expressive speech synthesis. The challenges for
building such a multi-factor system are threefold. First, explicitly
decoupling multiple factors – speaking style, emotion, and speaker
timbre – is more difficult as style and emotion patterns are both re-
flected in speech prosody and thus highly entangled. Second, it is
also difficult to obtain expressive data labeled with both emotion and
speaking style. Third, the reference-based model mentioned above
has a mismatch problem in practical non-parallel transfer scenarios,
i.e. the novel text content during inference is different from the ref-
erence signal selected in the training data, leading to performance
degradation, which is severe in multi-speaker expressive speech syn-
thesis [14] and may become more critical in our multi-factor case.
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Our proposed approach leverages the advances of the two-stage
framework with a text-to-style-and-emotion module (Text2SE) and a
style-and-emotion-to-wave (SE2Wave) module. The former predicts
linguistic, style, and emotional information embedded in the neural
bottleneck (BN) feature, while the latter takes the BN feature as in-
put and produces the target speaker’s voice with both stylistic and
emotional factors.

Based on the two-stage framework, this paper proposes the fol-
lowing designs. To address the multi-factor decoupling problem, we
adopt the multi-label binary vector (MBV) [23] and mutual informa-
tion (MI) minimization [24] to respectively discretize the extracted
embeddings and decouple the style, emotion, and speaker factors in
the design of both Text2SE and SE2Wave modules. As for the data
sparsity problem, we introduce a semi-supervised training strategy to
leverage expressive data from multiple speakers, including emotion-
labeled data, style-labeled data, and unlabeled data. To eliminate the
mismatch problem in non-parallel transfer scenarios, we introduce
a reference-candidate pool and propose an attention-based reference
selection approach, which reserves the fine-grained prosody from
the reference signal and avoids the difficulty of manual reference se-
lection. Extensive experiments demonstrate the good design of our
model. We suggest the readers listen to our online demos 1.

2. PROPOSED APPROACH
The proposed approach consists of a Text2SE module and a SE2Wave
module, as shown in Figure 1. The Text2SE module is to predict
BN features, pitch, and energy, which are speaker-independent in-
termediate representations with style and emotion. The SE2Wave
module aims at waveform generation of the target speaker in the
desired emotion and style. Note that emotional information is super-
posed in the procedure of wave generation as the supplement of the
fine-grained emotion variations for natural expression delivery. As
detailed in Section 2.4, the whole system will go through a training
stage and a fine-tuning stage, where different embedding extractors
are used in the two stages respectively to ensure good performance.

Text
BN 

Pitch 
Energy

WaveSE2WaveText2SE

Style Emotion SpeakerEmotion

Fig. 1. The architecture of proposed approach.

2.1. The Text2SE module
As illustrated in Figure 2, the Text2SE module is shaped with a back-
bone model and two embedding extractors for style and emotion re-
spectively. The backbone model is mainly composed of a phoneme
encoder, a variance adaptor, and a BN decoder. The goal of this mod-
ule is to produce the speaker-independent BN features conditioning
on the style and emotion embeddings.

During training, the style/emotion embedding extractor contains
a style/emotion encoder, a Multi-label Binary Vector (MBV) [23],
and a classifier. The style/emotion encoder takes the mel-spectrogram
as input and then uses an MBV to discretize the output for compres-
sion. As a bottleneck layer, MBV with Gumbel-Softmax can reduce
the difficulty of multi-factor decoupling and stabilize the adversarial
training. To train the embedding extractors, we add classification
constraints to the extracted embeddings. Besides, we adopt the vari-
ational contrastive log-ratio upper bound (vCLUB) [24] to measure
the mutual information between the extracted style and emotion
embeddings for sufficiently decoupling style and emotion by mutual
information (MI) minimization.

1Demo: https://zxf-icpc.github.io/multi-factor-decoupling/
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Fig. 2. The Text2SE module architecture.
The extracted emotion embedding is fed into the backbone

model through Conditional LayerNorm (CLN), and the style em-
bedding is first concatenated with the phoneme encoder output and
then goes through the CLN. The variance adaptor predicts the pitch
and energy normalized in the utterance level for eliminating the
speaker-related attributes. Finally, the BN decoder produces the
speaker-independent BN with style and emotional information. The
backbone network follows the structure used in FastSpeech2 [2].

The training objective of the Text2SE module Lt2se is
Lt2se = LBN + 0.1 · Lprosody + 0.1 · LMI + Lemo + Lsty, (1)

where LBN is the reconstruction loss of BN, Lprosody is the loss for
predicting pitch and energy,LMI is the MI loss between emotion em-
bedding and style embedding, Lemo and Lsty are the classification
loss of emotion and style embedding.

2.2. The SE2Wave module
Likewise, the SE2Wave architecture is composed of a backbone
model and two embedding extractors for speaker and emotion re-
spectively. The backbone is based on VITS [4], consisting of a BN
encoder, Flow, posterior encoder, HiFi-GAN decoder, and discrimi-
nator, as shown in Figure 4. The BN encoder, conditioned on the ex-
tracted emotion embedding, takes the BN feature, pitch, and energy
as input to provide the prior distribution of the speaker-independent
representations. The speaker embedding from the speaker lookup
table with MBV is treated as the conditional constraint of the Flow
model. Similar to the Text2SE module, for decoupling the speaker
and emotion in the SE2Wave module, we also add classification
constraints to the emotion embedding and use vCLUB to minimize
mutual information between the emotion embedding and the stop
gradient speaker embedding.

We denote Lemo as the emotion classification loss and LMI
′

as the MI loss in the SE2Wave module. The L1 loss is used as
the reconstruction loss Lrec to minimize the mel-spectrogram of the
ground truth and predicted waveform. The adversarial training loss
and feature map loss in VITS [4] are also adopted in the model for
improving the performance of wave generation.

The training objectives of the SE2Wave module are as follows:
LG

se2w =Lkl + 45 · Lrec + 0.1 · LMI
′+

Lemo + Ladv(G) + Lfm(G)
(2)

LD
se2w = Ladv(D), (3)

where LG, LD, and Lkl are the generative loss, discriminator loss,
and KL divergence of the hidden distribution.
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Fig. 3. The SE2Wave module architecture.

2.3. Semi-supervised training
Suppose we have a variety of multi-speaker expressive data at hand,
including emotion-labeled data, style-labeled data, and unlabeled
data. To better leverage all of the data, we introduce a simple semi-
supervised training strategy to train the emotion/style embedding ex-
tractors for multi-label classification. Specifically, for the emotion-
labeled data, only Lemo is calculated and Lsty is not considered in
Eq. (1); the model softly determines what style it should be. Like-
wise for the style-labeled data. As for the unlabeled data, neither
Lemo nor Lsty is calculated in Eq. (1) and Eq. (2), and the model
will softly determine what style or emotion it contains.

2.4. Attention based reference selection
At training time, the style/emotion embedding is extracted from
the target mel-spectrogram, which is parallel with the text content.
While during inference, the reference signal is different from the
novel text (i.e. non-parallel). This results in a mismatch problem of
the extracted embedding between the training and inference stages,
leading to degraded performance according to previous studies [14].
To relieve the performance degradation brought by the mismatch,
we introduce an extra stage to fine-tune the Text2SE and SE2Wave
modules. Particularly in the fine-tuning stage, we introduce a novel
embedding extractor to replace the original emotion/style extrac-
tor used in the previous training stage. The new extractor aims to
alleviate the aforementioned mismatch problem and select the ap-
propriate reference in a soft way. Thus the new embeddings are used
as conditions for the Text2SE and SE2Wave modules.

As illustrated in Figure 4, the embedding extractor in fine-tuning
procedure employs scaled dot-product attention [25] to calculate the
embedding output as the conditional constraints for the Text2SE and
SE2Wave modules. We introduce an embedding-candidate pool pro-
viding the candidates as the attention key and value, retrieved from
the given style/emotion ID. Specifically, the embedding-candidate
pool consists of N embeddings for each category (e.g., emotion-
happy or style-fairy-tales) extracted by the style/emotion encoder
and MBV in the previous training stage. Unlabeled data is treated
as a special category. The attention query is provided by a GST-
layer [26] from the input hidden representations which are the
phoneme encoder outputs in the Text2SE module and BN, pitch, and
energy inputs in the SE2Wave module respectively. In this way, the
attention mechanism selects the embedding with the most signifi-
cant attention weight as the appropriate reference embedding for the

models based on the linguistic input during fine-tuning.
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Fig. 4. The embedding extractor in fine-tuning procedure.

2.5. Pipeline
The pipeline of the proposed approach contains training, fine-tuning,
and inference phases. During training, we train the two-stage model
using the objectives mentioned above and update the emotion-/style-
embedding extractors Et

emo and Et
sty by the extracted embeddings

with the constraint of MI loss and the semi-surprised classification
loss. During fine-tuning, the embedding extractors Ef

emo and Ef
sty

are updated by the objectives of the acoustic model. In inference, the
proposed two-stage system adopts the same embedding extractor as
the fine-tuning stage. Both the Text2SE and SE2Wave modules auto-
matically select the appropriate embedding according to the textual
input, style, and emotion.

3. EXPERIMENTS
3.1. Experimental Setup
Three internal Mandarin corpora are involved in the experiments:
1) dataset M30S3 contains 30 speakers, and its total duration is
18.5 hours, in which each speaker has 1 to 3 styles including po-
etry recitation, story telling - fairy tales and story telling - novels;
2) dataset M3E6 contains three speakers, and its total duration is
21.1 hours, in which each speaker has six emotions of anger, fear,
happiness, sadness, surprise and neutral; and 3) dataset M30U has
30 speakers with neither style tags nor emotion tags, and its total
duration is 18.2 hours. For all recordings, the sample rate is con-
verted to 24 kHz. The BN features are extracted with 12.5ms hop-
size and 256-dimension from a robust TDNN-F model trained with
30k hours of Mandarin speech data. To validate the performance of
our proposed approach, we implement the following systems:

• MR-Tacotron: Multi-reference structure follows [14] to dis-
entangle and control specific styles based on the FastSpeech 2
architecture for a fair comparison. A HiFi-GAN [3] vocoder
is adopted to transform the predicted mel-spectrogram into
speech waveform.

• Referee: A cross-speaker style transfer framework follows
Referee [8] with additional emotion transfer.

• Proposed: the two-stage framework proposed in this paper to
decouple and recompose the multiple factors in speech.

In our implementation of the proposed approach, the emotion and
style encoders follow the structure of mel-style encoder proposed by
Meta-StyleSpeech [27]. All classifiers have the same structure that
consists of 3 fully connected layers. The Text2SE backbone and mu-
tual information estimator follow the settings of FastSpeech 2 [2],
and VQMIVC [28] respectively. The SE2Wave backbone follows
the settings of VITS [4], and the BN encoder consists of 6 FFT
blocks. During fine-tuning, we set N = 100 for the embedding-
candidate pool in this paper.

3.2. Subjective evaluation
We conduct mean opinion score (MOS) experiments to evaluate
speech naturalness, emotion similarity, speaker similarity, and style
similarity. Specifically, given 20 reserved transcripts for each style,
we generate samples respectively for each emotion category, re-
sulting in 360 listening samples (20 × 3 × 6). We invite 20 native



Table 1. Results of subjective evaluation with 95% confidence interval and objective evaluation.
Model Naturalness Emotion Similarity Speaker Similarity Style Similarity CER (%) Cosine Similarity

Proposed 4.03 ± 0.08 3.89 ± 0.10 3.93 ± 0.07 3.81 ± 0.11 6.7 0.856
MR-Tacotron [14] 3.83 ± 0.09 3.38 ± 0.12 3.62 ± 0.10 3.77 ± 0.10 6.0 0.804

Referee [8] 3.07 ± 0.11 2.88 ± 0.12 3.37 ± 0.08 3.43 ± 0.11 7.6 0.846

Mandarin Chinese speakers to participate in the listening tests. In
each test session (naturalness/emotion/speaker/style), participants
are asked to rate how similar the synthetic and the reference speech
is in the specific assessment metric while ignoring other aspects.

As shown in Table 1, the proposed approach significantly out-
performs Referee and MR-Tacotron in terms of speech naturalness,
emotion similarity, and speaker similarity. The high emotion and
speaker similarity scores demonstrate that the proposed approach
can decouple the emotion and speaker identity effectively. For the
style similarity, the proposed approach achieves much better perfor-
mance than Referee and is slightly better than MR-Tacotron. The
results of the emotion, style and speaker similarity indicate that the
proposed method can effectively decouple multiple factors from
speech. Besides, the proposed method achieves the best audio nat-
uralness, indicating its flexibility and stability in generating specific
emotional speech of target speakers.

3.3. Objective evaluation
Robustness. We measure the character error rate (CER) of the syn-
thesized samples by the pre-trained WeNet [29] to assess the ro-
bustness of the models. Moreover, we use the pre-trained ECAPA-
TDNN [30] to extract the x-vector and calculate the cosine similarity
to further verify the speaker similarity. As shown in Table 1, the pro-
posed model achieves the highest cosine similarity. Interestingly, the
Referee achieves a similar cosine similarity to the proposed method.
However, subjective tests show a massive gap between the proposed
method and the Referee in speaker similarity. We speculate that the
poor audio quality of the Referee affects the listeners’ judgment. We
observe that the ASR model does not recognize Poet well, where
CER is generally high. Considering speech generated from the pro-
posed method is expressive of the multiple factors, it’s reasonable to
get a slightly higher CER than MR-Tacotron.

Effectiveness of semi-supervised training. To verify the ef-
fectiveness of semi-supervised training, we visualize the emotion
and style embeddings through t-SNE [31]. One hundred utterances
reserved per emotion or style are adopted for the test. As shown
in Figure 5(a) and 5(b), the style and emotion embeddings are well
clustered, proving the effectiveness of semi-supervised training.
Moreover, Figure 5(c) demonstrates that emotion embeddings in the
SE2Wave model cannot form clusters by categories. We conjecture
that emotion embeddings in SE2Wave mainly focus on and supple-
ment the fine-grained emotional variance since emotion in Text2SE
represents the global category.
(a) Poet

Fairytales
Novels

(b) Angry
Fear
Happy
Sad
Surprise
Neutral

(c) Angry
Fear
Happy
Sad
Surprise
Neutral

Fig. 5. T-SNE results of style embedding and emotion embedding.
(a) style embedding in Text2SE, (b) emotion embedding in Text2SE
and (c) emotion embedding in SE2Wave.

Emotion and Style Embedding. We extract embeddings of
all training utterances and then calculate the standard deviation of
all embeddings for each dimension. The lower standard deviation

Table 2. Results of Ablation study with 95% confidence interval.

Model Naturalness Emotion
Similarity

Speaker
Similarity

Style
Similarity

Proposed 4.03 ± 0.08 3.89 ± 0.10 3.93 ± 0.07 3.81 ± 0.11
- MBV 3.47 ± 0.10 3.68 ± 0.08 3.33 ± 0.10 3.60 ± 0.14
- MI 3.74 ± 0.10 3.88 ± 0.08 3.21 ± 0.11 3.71 ± 0.14
- FT 3.88 ± 0.08 3.83 ± 0.09 3.63 ± 0.09 3.76 ± 0.13
- EE 3.85 ± 0.08 3.49 ± 0.09 3.90 ± 0.08 3.78 ± 0.14
- BN 2.63 ± 0.12 2.47 ± 0.13 2.20 ± 0.11 2.38 ± 0.15

means the dimension changes less among embeddings of all utter-
ances, which is less valuable, in other words. The embeddings are in-
tuitively presented in Figure 6, where the darker vertical bar means a
higher standard deviation. We can observe that some dimensions are
purely white, meaning they are not used at all. Moreover, Figure 6(c)
shows obviously fewer dimensions are used in the SE2Wave emo-
tion embedding since it is just a supplement to provide fine-grained
emotional variance. These observations show that MBV can effec-
tively discretize information in the embeddings. More importantly,
Figure 6(a) and (b) are mutually exclusive, indicating that style and
emotion are well decoupled.

(a)
(b)
(c)
Fig. 6. Results of the standard deviation of each dimension of the
extracted embedding. (a) style embedding in Text2SE, (b) emotion
embedding in Text2SE and (c) emotion embedding in SE2Wave.

3.4. Ablation study
We conduct an ablation study to validate the components of our pro-
posed method by removing certain modules and jointly training two
modules, as shown in Table 2. The results show that removing the
Multi-label Binary Vector (-MBV) module leads to a decline in per-
ceptive evaluations, indicating that MBV improves system stability.
Removing the Mutual information loss (-MI) and the emotion extrac-
tor in SE2Wave (-EE) lead to a sharp decline in speaker similarity
and emotion similarity, respectively, highlighting the effectiveness
of MI loss in decoupling multiple factors and the importance of fine-
grained emotional variance composition in the SE2Wave stage. The
results (-FT) also show that the fine-tuning process can effectively
improve overall performance. Furthermore, the jointly trained model
(-BN) fails to disentangle multiple factors, resulting in synthetic au-
dio with low naturalness, expressiveness, and speaker similarity.

4. CONCLUSIONS
This paper aims to synthesize speech with desired style and emo-
tion for a target speaker by transferring the style and emotion from
reference speech recorded by other speakers. We approach this chal-
lenging problem with a two-stage framework composed of a text-
to-style-and-emotion (Text2SE) module and a style-and-emotion-
to-wave (SE2Wave) module, while neural bottleneck features are
served as the intermediate representation. Importantly, based on
this framework, we have proposed several contributions, includ-
ing multi-factor decomposition, semi-supervised training to better
leverage data, and attention-based reference selection. Extensive
experiments demonstrate the good design of our model.
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