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ABSTRACT

Self-supervised speech representation learning (SSL) has shown to

be effective in various downstream tasks, but SSL models are usually

large and slow. Model compression techniques such as pruning aim

to reduce the model size and computation without degradation in ac-

curacy. Prior studies focus on the pruning of Transformers; however,

speech models not only utilize a stack of Transformer blocks, but

also combine a frontend network based on multiple convolutional

layers for low-level feature representation learning. This frontend

has a small size but a heavy computational cost. In this work, we pro-

pose three task-specific structured pruning methods to deal with such

heterogeneous networks. Experiments on LibriSpeech and SLURP

show that the proposed method is more accurate than the original

wav2vec2-base with 10% to 30% less computation, and is able to

reduce the computation by 40% to 50% without any degradation.

Index Terms— Structured pruning, self-supervised models,

speech recognition, spoken language understanding

1. INTRODUCTION

Self-supervised speech representation learning (SSL) has achieved

great success in a variety of speech processing tasks [1, 2, 3, 4, 5,

6, 7]. However, SSL pre-trained models (e.g., wav2vec2 [8], Hu-

BERT [9] and WavLM [10]) usually require large memory and high

computational cost. Hence, it is difficult to deploy them in real-

world applications. Recent studies have utilized model compression

techniques to reduce the model size and computation without degra-

dation in accuracy. One common approach is knowledge distilla-

tion [11], which trains a small student model with a pre-specified ar-

chitecture to match the soft targets generated by a large pre-trained

model. Distillation has shown to be effective in natural language

processing (NLP) [12, 13] and speech processing [14, 15, 16, 17],

but it usually performs general distillation using large amounts of

unlabeled data before task-specific distillation or fine-tuning. This

can make the training procedure computationally expensive.

Another compression technique is pruning, which extracts a

compact and accurate subnetwork from the original model. Pruning

has been widely used in computer vision (CV) [18, 19, 20, 21] and

NLP [21, 22, 23, 24]. For speech models, [25, 26] prune recurrent

neural networks (RNNs) for resource-limited applications. Another

work [27] prunes deep neural networks (DNNs) based speech en-

hancement models using the sparse group lasso regularization [28].

These studies do not consider SSL models. PARP [29] is one of

the first pruning methods designed for SSL speech models, which

prunes individual weights based on magnitudes. Despite its good

performance in low-resource automatic speech recognition (ASR),

∗Work done during an internship at ASAPP.

PARP is a type of unstructured pruning and thus cannot achieve an

actual speedup without an efficient sparse matrix computation li-

brary, which is not usually available in many deployment scenarios.

Another limitation is that PARP only prunes the Transformer layers

while keeping the convolutional feature extractor (CNN) fixed. As

discussed in [30], although the CNN has much fewer parameters

than the Transformer, its computational cost is large and cannot

simply be ignored. For example, in wav2vec2-base, the CNN has

less than 5% of the total parameters but its computational cost is

nearly 33% in terms of multiply-accumulate (MAC) operations for

a 10-second audio.

In this work, we propose HJ-Pruning (Heterogeneous Joint

Pruning) where both CNN and Transformer components are pruned

jointly. We consider three variants: (a) HJ-Pruning based on the

overall model size sets a single sparsity for the entire model size.

(b) HJ-Pruning based on separate model sizes introduces a sepa-

rate sparsity hyperparameter for each component which allows fine-

grained tuning to find a trade-off between CNN and Transformer. (c)

HJ-Pruning based on the overall MACs uses multiply–accumulate

(MAC) operations as the sparsity criterion to find the best allocation

of the computation budget across different components. We evaluate

our methods in the ASR and spoken language understanding (SLU)

tasks. Experiments on LibriSpeech and SLURP show that all HJ-

Pruning methods outperform the previous Transformer-only pruning

strategy. Our HJ-Pruning-MAC is more accurate than the original

wav2vec2-base with 10% to 30% less computation, and is able to

reduce the computation by 40% to 50% without any degradation.

2. BACKGROUND

2.1. Self-supervised pre-trained speech models

We evaluate the pruning algorithms mainly using wav2vec2 [8], but

our proposed methods can be easily applied to other SSL models

with as a similar architecture such as HuBERT [9] (see Sec. 4.5),

SEW-D [30], and WavLM [10]. The wav2vec2-base model (pre-

trained on Librispeech 960h [31]) consists of a convolutional feature

extractor (CNN) and a Transformer [32] encoder. The CNN con-

tains seven temporal convolutions with 512 channels and GeLU [33]

activations. The Transformer encoder is a stack of 12 Transformer

layers with a hidden dimension of 768 and 12 attention heads.

2.2. Structured pruning using L0 regularization

We follow [22, 23, 34] to formulate the structured pruning task as

a regularized learning problem, which aims to learn a sparse model.

Let f(·; θ) be a model with parameters θ = {θj}
n
j=1, where each θj

is a group of parameters (e.g., an attention head) and n is the num-

ber of groups. The pruning decisions are given by a set of binary
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variables called gates: z = {zj}
n
j=1 where zj ∈ {0, 1}. The model

parameters after pruning are θ̃ = {θ̃j}
n
j=1 such that θ̃j = θjzj . We

usually sample gates from some distributions (e.g., Bernoulli) and

update their parameters during training. Suppose the gates follow a

distribution q(z;α) with parameters α = {αj}
n
j=1, then our train-

ing objective is:

min
θ,α

Ez∼q

[

1

D

D
∑

i=1

L(f(xi; θ̃),yi) + λ‖θ̃‖0

]

, (1)

where {(xi,yi)}
D
i=1 is the training data containing D samples, L is

the training loss (i.e., CTC loss for ASR, cross entropy loss for SLU),

and λ > 0 is a hyperparameter to control the sparsity. However, it

is intractable to optimize Eq. (1) using gradient descent because the

gates are discrete. Louizos et al. [34] propose a reparameterization

trick to make the loss differentiable, which has been widely used in

sparse model learning. Here we only introduce their final approach.

Please refer to [34] for the derivation. Louizos et al. adopt the Hard

Concrete Distribution [34] to model the gates z:

u ∼ U(0, 1), v(α) = σ

(

1

β

(

log
u

1− u
+ logα

))

,

v̄(α) = (r − l) · v(α) + l, z = min(1,max(0, v̄(α))),

(2)

where U(0, 1) is a uniform distribution over the interval [0, 1], σ(·)
is the sigmoid function and β is a temperature constant. The actual

parameters are α. l < 0 and r > 0 are two constants to stretch

the output of sigmoid to [l, r], which is finally rectified to [0, 1]. It

is proven that the first term in Eq. (1) now becomes differentiable

w.r.t. all parameters. We can write the second term in a closed-form

expression based on the distribution of z shown in Eq. (2):

Ez

[

‖θ̃‖0
]

=

n
∑

j=1

P (zj 6= 0) =

n
∑

j=1

σ

(

logαj − β log
−l

r

)

,

(3)

which is also differentiable. P (·) denotes the probability.

Now we can train a sparse model using Eq. (1). However, it is

difficult to exactly control the pruned model size [22, 23]. Instead of

adding a regularizer λ‖θ̃‖0, prior studies [22, 23] suggest optimizing

the training loss subject to an explicit equality constraint on sparsity:

min
θ,α

Ez

[

1

D

D
∑

i=1

L(f(xi; θ̃),yi)

]

s.t. s(α) = t, (4)

where s(α) is the current sparsity and t is a pre-specified target spar-

sity. The sparsity is defined as the percentage of parameters that are

pruned. Similar to Eq. (3), given the current parameters α, we can

calculate the expected number of nonzero gates in every module of

the model. Recall that each gate is associated with a group of pa-

rameters. Hence, we know the expected number of parameters that

are still kept, which further gives us the sparsity s(α). Eq. (4) can

be rewritten as an adversarial game according to the augmented La-

grangian method [22]:

max
λ

min
θ,α

Ez

[

1

D

D
∑

i=1

L(f(xi; θ̃),yi)

]

+ g(λ,α), (5)

g(λ,α) = λ1(s(α)− t) + λ2(s(α)− t)2, (6)

where λ1, λ2 ∈ R are two Lagrange multipliers that are jointly

trained with other parameters. Once the game reaches equilibrium,

the equality constraint will be satisfied. Hence, we can precisely

control the sparsity of the pruned model. To facilitate training, we

linearly increase the target sparsity t from zero to the desired value.

2.3. Structured pruning of Transformer layers

A Transformer [32] layer consists of a multi-head self-attention

(MHA) block and a position-wise feed-forward network (FFN). We

consider three pruning units, i.e., attention heads (12 per layer),

intermediate size of FFN (3072 per layer), and the model’s hidden

size (768). We define a gate for each pruning unit. Given an input

sequence X ∈ R
T×d of length T and feature size d, the MHA and

FFN at a particular layer are the following:

MHA(X) =
h

∑

k=1

(zhead
k · ATT(X;Watt

k )), (7)

FFN(X) = GeLU(XW
ffn
1 ) · diag(zint) ·Wffn

2 , (8)

where ATT(·;Watt
k ) denotes the k-th attention head parameterized

by Watt
k , and zhead

k is a scalar gate. There are h heads in total. zint

is a dint-dimensional gate for the FFN intermediate size. diag(·)
creates a diagonal matrix with its argument vector on the diago-

nal. GeLU is an activation [33]. FFN has two linear layers Wffn
1 ∈

R
d×dint

,Wffn
2 ∈ R

dint
×d. Each Transformer layer has its own gates

and their parameters are independent. For the main hidden size, we

define a gate zhid of size d and share it across layers as in [23].

3. PROPOSED METHODS

3.1. Joint pruning based on the model size

As introduced in Sec. 1, the convolutional feature extractor (CNN) in

SSL models is small in size but heavy in computation. To optimize

the overall computation, we propose to jointly prune the CNN and

Transformer. We have introduced the pruning units for Transformer

in Sec. 2.3. For CNN, we prune convolution channels by introduc-

ing gate variables for every channel in every CNN layer, i.e., each

output channel is multiplied with a gate. To train the model using

Eq. (5), we need to define the model sparsity s(α). Our first pro-

posed method is HJ-Pruning-Size (HJ-Pruning based on the overall

model size), which can be viewed as a direct extension from prior

work [22, 23]. Specifically, given the current distribution parame-

ters α, we can calculate the probability of each gate being nonzero

(i.e., the corresponding module is kept) as in Eq. (3). We then know

the current sizes of all modules, including the model’s hidden size,

CNN channels, attention heads, and FFN intermediate sizes. Based

on these sizes, we can compute the percentage of parameters that are

pruned, which is the overall size sparsity sall
size(α).

However, Sec. 4.2 shows that this approach does not work well

in practice, because the CNN has much fewer parameters than the

Transformer. If we simply set an overall sparsity, parameters will be

pruned mainly from Transformer. To solve this problem, we propose

the second method, i.e., HJ-Pruning-SepSize (HJ-Pruning based on

separate model sizes). We calculate the size sparsity separately for

CNN (scnn
size(α)) and Transformer (strans

size (α)). We also specify sepa-

rate target sparsities tcnn
size, t

trans
size and extend Eq. (6) to have two terms:

gsize = λ
cnn
1 (scnn

size(α)− t
cnn
size) + λ

cnn
2 (scnn

size(α)− t
cnn
size)

2

+ λ
trans
1 (strans

size (α)− t
trans
size ) + λ

trans
2 (strans

size (α)− t
trans
size )

2
.

(9)

As shown in Sec. 4.2, this method achieves strong performance.

However, it requires careful tuning of the separate target sparsities.

We always need to search over the two sparsities to meet a particular

budget, which is computationally expensive.



3.2. Joint pruning based on the MACs

The third method we propose is HJ-Pruning-MAC (HJ-Pruning

based on the overall MACs). Unlike prior methods, we prune the

entire model to directly meet a computational budget measured by

MACs. We follow the formulas used in the DeepSpeed flops profiler

to calculate MACs. 1 For an input sequence of length T and hidden

size d, the MACs for each MHA and FFN block are as follows:

MAC
mha = 4Thddhead + 2T 2

hd
head

, (10)

MAC
ffn = 2Tddint

, (11)

where h is the number of attention heads and dhead is the size per

head. dint denotes the intermediate size of FFN. The MACs of a 1-D

convolution can be computed by

MAC
cnn = T

out
C

out
C

in
K, (12)

where T out is the output length and K is the kernel size. C in and

Cout are the input and output channels, respectively. Note that

h, d, dint, C in, Cout are calculated from the current gate distributions

(similar to Eq. (3)). They are differentiable functions of α. We

define the percentage of MACs that are pruned as the MACs-based

sparsity sall
macs(α). 2 It is differentiable w.r.t. parameters α. Hence,

we can still train the model using Eq. (5).

4. EXPERIMENTS

4.1. Experimental setup

We focus on task-specific structured pruning of SSL speech models.

We mainly prune wav2vec2-base, but we also show that our methods

can be directly applied to HuBERT-base in Sec. 4.5. We conduct ex-

periments using PyTorch [35] and HuggingFace’s transformers [36].

Our implementation of the basic pruning algorithm is based on prior

work in NLP [23]. For each task, we add a linear layer on top of

the pre-trained SSL model and fine-tune the entire model to obtain

an unpruned model. Then, we prune this fine-tuned model to reach

a specific sparsity using Eq. (5). We employ an AdamW optimizer

and a linear learning rate scheduler for all experiments.

ASR: The 100-hour clean set of LibriSpeech [31] is utilized. In

Sec. 4.3, the Tedlium [37] test set is used as out-of-domain data to

demonstrate the robustness of structured pruning. The training loss

is CTC [38]. We fine-tune a pre-trained model for 25 epochs and

prune for 30 epochs with a learning rate of 1.5e-4 and a batch size

of 64. The target sparsity is linearly increased to the desired value

during the first 5 epochs. The learning rate of α and λ is selected

from {0.02, 0.05}. The pruned model is fine-tuned for another 10

epochs with a learning rate of 5e-5. The learning rate warmup steps

are 3k, 3k, and 1k for training, pruning, and fine-tuning, respectively.

SLU: The SLURP corpus [39] is used for intent classification. A

pre-trained SSL model is fine-tuned for 50 epochs and pruned for 50

epochs with a learning rate of 1e-4 and a batch size of 80. The final

fine-tuning has 10 epochs with a learning rate of 1e-5. The learning

rate warmup is performed for 4k, 4k, 1k steps for training, pruning,

and fine-tuning, respectively. Other configs are the same as ASR.

1https://github.com/microsoft/DeepSpeed
2The computation of MACs also depends on the sequence length T , be-

cause MHA has quadratic complexity w.r.t. T . We use 10 seconds to compute
MACs in our experiments. This is a “virtual” length used only for computing
MACs. We do not modify any training utterances.
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Fig. 1: Word Error Rate (%) vs. Multiply-Accumulate Operations

on LibriSpeech test-clean. Our proposed HJ-Pruning methods con-

sistently outperform the baseline.
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Fig. 2: Intent Classification Accuracy (%) vs. Multiply-Accumulate

Operations on the SLURP test set. Our proposed HJ-Pruning meth-

ods consistently outperform the baseline.

4.2. Main results

Fig. 1 compares various pruning methods for LibriSpeech ASR.

The unpruned model has good performance (5.77% WER) but is

computationally expensive (74.4 GMACs). At a low sparsity (>55

GMACs), all pruned models achieve similar WERs which are even

better than the original result, because the pruning target can regu-

larize the training. As the sparsity increases, the baseline method

which only prunes Transformer drastically degrades. Our proposed

three algorithms which jointly prune CNN and Transformer consis-

tently outperform the baseline by a large margin. We can reduce

over 40% of the total computation without degradation in WER. HJ-

Pruning-MAC has similar performance with HJ-Pruning-SepSize,

both outperforming HJ-Pruning-Size. This is because the CNN has

much fewer parameters than Transformer. If we simply set an overall

size sparsity, the pruned parameters are mainly from Transformer,

while CNN still has high computational overhead. To prune them

based on separate sizes (Eq. (9)), we have to search for the best com-

bination of the two target sparsities. This model selection procedure

is presented in Fig. 3a, where we perform a grid search and select

the Pareto frontiers. This requires much more computation than the

other methods. Hence, the HJ-Pruning-MAC is probably the best

method in terms of performance and complexity.

Fig. 2 shows the results of intent classification on SLURP. The

overall trend is very similar to that of ASR. Our joint pruning meth-

ods outperform the baseline by a large margin, especially at a high

sparsity (low MACs). HJ-Pruning-SepSize is comparable with HJ-

Pruning-MAC, but again, it requires a grid search over the two target

sparsities as shown in Fig. 3b. This high complexity hinders its usage

in practice. Compared to ASR, we can achieve a higher compression

rate (over 55%) without loss in accuracy. This is probably because

https://github.com/microsoft/DeepSpeed
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Fig. 3: Model selection for HJ-Pruning-SepSize. As described in

Sec. 3.1, we perform grid search over the Transformer sparsity (0.1

to 0.4/0.6) and CNN sparsity (0.1 to 0.95). The Pareto frontiers are

shown in blue, which are also presented in Fig. 1 and Fig. 2.
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Fig. 4: Robustness analysis. All models are trained on LibriSpeech

100h and then directly evaluated on the out-of-domain Tedlium test

set. The trend is similar to that of the in-domain evaluation in Fig. 1.

the classification task is easier and thus requires less information

than the sequence-to-sequence task.

4.3. Robustness of structured pruning

To investigate the robustness of the proposed structured pruning

methods, we test the ASR models using an out-of-domain corpus,

TED-LIUM [37]. Note that these models are trained only with Lib-

riSpeech data. As shown in Fig. 4, again, our joint pruning methods

consistently outperform the baseline, and the trend is very similar to

that of the in-domain evaluation (see Fig. 1). This demonstrates that

our pruning methods are robust.

4.4. Architectures of pruned models

Fig. 5 shows the remaining CNN channels, attention heads and FFN

intermediate sizes after HJ-Pruning-MAC. The target sparsity ranges

from 10% to 40%. For CNN, the sequence length gradually de-

creases due to downsampling. The first few layers have higher com-

putational cost, so they tend to be pruned more. For MHA and FFN,
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Fig. 5: ASR model architectures after HJ-Pruning-MAC. The target

sparsity ranges from 10% to 40%.
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Fig. 6: Results of pruning HuBERT-base on LibriSpeech test-clean.
∗ WERs from SUPERB [1]. See Sec. 4.5 for discussions.

the upper layers are pruned the most, indicating that upper layers are

more redundant. Prior studies had similar observations by analyz-

ing the self-attention patterns in speech encoders [40, 41, 42]. The

overall trend is also consistent with a prior work in NLP [23].

4.5. Comparison with other compression methods

As introduced in Sec. 2.1, HJ-Pruning can be directly applied to

other SSL models. In Fig. 6, we prune the HuBERT-base model

based on the overall MACs for ASR. The performance is similar to

that of the wav2vec2. We also include other compressed models for

comparison, including DistilHuBERT [15] and LightHuBERT [16].

Note that these results are not really comparable due to: (1) Their

WERs are from SUPERB [1], which combines a frozen SSL model

with another learnable RNN. We also tried to replace the RNN with

a single linear layer and fine-tune the entire model (same as our set-

ting), but the performance was clearly worse. (2) Their compressed

models are initially distilled using the 960h unlabeled LibriSpeech

data and then fine-tuned on the 100h labeled data, but our task-

specific pruning only utilizes the 100h data. This comparison shows

that our task-specific pruning method is highly effective.

5. CONCLUSION

In this paper, we propose HJ-Pruning to jointly prune heteroge-

neous components of SSL speech models, which achieves strong

performance-efficiency tradeoffs compared to several baselines. At

a small sparsity (0.1 to 0.3), HJ-Pruning improves the wav2vec2

baseline while being faster. Depending on the task, HJ-Pruning

saves 40% or 50% MACs while maintaining the performance of

wav2vec2. HJ-Pruning is a general method that can be applied to

most of speech SSL models such as HuBERT. In the future, we plan

to explore the application of HJ-Pruning on encoder-decoder SSL

models [43] and other SLU tasks [44, 5].
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