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ABSTRACT
Gaussian process state-space model (GPSSM) is a fully probabilis-
tic state-space model that has attracted much attention over the past
decade. However, the outputs of the transition function in the existing
GPSSMs are assumed to be independent, meaning that the GPSSMs
cannot exploit the inductive biases between different outputs and lose
certain model capacities. To address this issue, this paper proposes
an output-dependent and more realistic GPSSM by utilizing the well-
known, simple yet practical linear model of coregionalization (LMC)
framework to represent the output dependency. To jointly learn the
output-dependent GPSSM and infer the latent states, we propose
a variational sparse GP-based learning method that only gently in-
creases the computational complexity. Experiments on both synthetic
and real datasets demonstrate the superiority of the output-dependent
GPSSM in terms of learning and inference performance.

Index Terms— Gaussian process state-space model, linear
model of coregionalization, variational inference, sparse Gaussian
process.

1. INTRODUCTION
A well-established probabilistic tool for modeling the underlying
dynamical system of sequential data is the state-space model (SSM),
which has been successfully applied in many areas of engineering,
statistics, computer science, and economics [1]. For the case when
the system dynamics are fairly known, a plethora of out-of-the-box
learning and inference methods have been developed over the past
decades, such as the Kalman filter (KF) for linear Gaussian dynamic
systems, and the particle filter (PF) for nonlinear dynamic systems
[1]. However, in some harsh scenarios, such as model-based rein-
forcement learning, or disease epidemic propagation, the underlying
system dynamics cannot be well determined a priori [2]. Thus,
the dynamics need to be learned from the observed noisy measure-
ments, leading to the emergence of data-driven state-space models
[3, 4, 5, 6, 7, 8, 9, 10, 11].

Gaussian processes (GPs), being an eminent Bayesian nonpara-
metric models for machine learning [12, 13, 14], can be adopted as
function priors in classical SSM, giving rise to the Gaussian process
state-space model (GPSSM) [7]. A carefully selected GP prior pro-
vides not only meaningful uncertainty calibration in low data regime
but also automatic scaling of model complexity based upon data vol-
ume [15, 16]. Due to these appealing properties, GPSSM and its
variants have been applied to various applications, such as human mo-
tion capture and pedestrian tracking and navigation [17, 18, 19, 20].

Despite the ever-increasing popularity of GPSSM, accurate, si-
multaneous learning and inference in GPSSM remains a challenging
problem. Much progress has been made over the past decade along
different paths [6, 7, 8, 9, 10, 11, 21, 22]. Concretely, the first fully

B The corresponding author is Feng Yin (yinfeng@cuhk.edu.cn).

Bayesian learning of GPSSM was proposed in [7] using particle
Markov chain Monte Carlo. Variational inference methods were de-
veloped based upon the mean-field (MF) assumption to reduce the
heavy computational load of the sampling methods [6, 8, 22]. More
recent works have been devoted to overcoming the MF assumption
for enhanced learning and inference performance [10, 11, 21, 23].
However, all the existing methods utilize independent GPs to model
the multi-outputs of the transition function while ignoring their de-
pendencies, which can cause inductive bias between the outputs that
cannot be transferred to improve the model generalization [24]. The
inference performance can be significantly degraded, especially when
the latent states are only partially observed (see Section 4.1). More-
over, high-dimensional data features nowadays are often entangled.
For instance, in disease progression prediction application, the dis-
ease state of a patient comprises a series of mutually influencing
physiological metrics [4]. Therefore, assuming the independence of
outputs is simplifying but unrealistic.

In this paper, we aim to address the above-mentioned issues by
explicitly modeling the output dependency without sacrificing much
computational complexity. The main contributions are summarized
as follows. First, we resort to a simple yet practical framework,
namely the linear model of coregionalization (LMC) [25, 26] to en-
code dependency among outputs of the GP-based transition function
in GPSSM. To the best of our knowledge, this is the first study on
output-dependent GPSSMs. Second, we propose a variational learn-
ing method based upon the sparse GP [27], in which learning and
inference only gently increase the computational complexity. Third,
experimental results obtained using real and synthetic datasets corrob-
orate that the proposed output-dependent GPSSM outperforms vari-
ous benchmark methods, including the output-independent GPSSM
[10] and the deep state-space model (DSSM) [3].

The remainder of this paper is organized as follows. Some pre-
liminaries related to GPSSM are provided in Section 2. In Section 3,
we introduce our proposed output-dependent GPSSM and detail the
learning and inference algorithm. Numerical results are provided in
Section 4. Finally, we conclude the paper in Section 5.

2. PRELIMINARIES
2.1. Gaussian Process
Gaussian process (GP) defines a collection of random variables in-
dexed by X ⊆ Rdx , such that any finite collection of these variables
follows a joint Gaussian distribution [12]. With this definition, a Gaus-
sian process is typically used to define a distribution over functions
f(x) : Rdx 7→ R,

f(x) ∼ GP
(
µ(x), kθgp

(
x,x′

))
, (1)

where µ(x) is a mean function, usually set to be zero in practice;
kθgp (x,x′) is a covariance function/kernel function; θgp is a set of
hyperparameters to be tuned for model selection. Following Bayes’
theorem, the function prior is combined with new data to obtain an
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analytical posterior distribution. More specifically, given a noise-free
training dataset D = {X, f} = {xi, fi}ni=1, the posterior distribu-
tion p(f(x∗)|x∗,D) at any test input x∗ ∈ X is Gaussian, fully
characterized by the posterior mean ξ and the posterior variance Ξ:

ξ(x∗) = µ(x∗) +Kx∗,XK
−1
X,X (f − µ(X)) , (2a)

Ξ(x∗) = k(x∗,x∗)−Kx∗,XK
−1
X,XK

>
x∗,X , (2b)

where KX,X denotes the covariance matrix evaluated on the train-
ing input X , and each entry is [KX,X ]i,j = kθgp(xi,xj); Kx∗,X

denotes the cross covariance matrix between the test input x∗ and
the training input X; µ(X) = {µ(xi)}ni=1 denotes the prior mean
function evaluated on X .

2.2. Gaussian Process State-Space Model
A generic state-space model (SSM) describes the probabilistic de-
pendence between latent state xt ∈ Rdx and observation yt ∈ Rdy .
Mathematically, it can be written as

xt+1 = f(xt) + vt, (3a)
yt = g(xt) + et, (3b)

where vt and et are additive noise terms; f(·) and g(·) are transition
function and emission function, respectively.

Placing a GP prior over the transition function f(·) and assuming
a parametric emission function g(·) in SSM leads to the well-known
Gaussian process state-space model (GPSSM)1 [9], which is depicted
in Fig. 1 and expressed mathematically as:

ft =f(xt−1), f(·)∼GP
(
µ(·),kθgp(·, ·)

)
, x0∼p(x0), (4a)

xt | ft ∼ N (xt | ft,Q) , yt | xt ∼ N (yt | Cxt,R) , (4b)

where the emission model is assumed to be known and linear with
the coefficient matrix,C = [Idy ,0] ∈ Rdy×dx , to reduce the system
non-identifiability [9]. In the case of dx > dy , we say that the latent
states are partially observable. The state transitions and observations
are corrupted by zero-mean Gaussian noise with covariance matrices
Q andR, respectively. If the state dimension dx > 1, the transition
f(·) : Rdx → Rdx is typically modeled with dx mutually indepen-
dent GPs. More concretely, independent GP priors are placed on each
dimension-specific function fd(·) : Rdx → R, and

ft = f(xt−1) , {fd(xt−1)}dxd=1 , {ft,d}dxd=1, (5)

where each independent GP has its own mean function, kernel func-
tion, and hyperparameters. The challenging task in GPSSM is to
learn the transition function and noise models, i.e., θ = [θgp,Q,R],
and infer the latent states of interest simultaneously.

3. OUTPUT-DEPENDENT GPSSM
In this section, we first point out the issues existing in the GPSSM
literature, then propose our output-dependent GPSSM and explain
why it is able to overcome these issues. Lastly, we detail the proposed
variational learning method for the output-dependent GPSSM.

3.1. Problem Statement and Output-Dependent GPSSM
As depicted in Fig. 2a and described in Section 2.2 (see Eq. (5)), the
existing GPSSM works assume the transition function outputs are
independent when modeling high-dimensional latent dynamics. The
adverse effects of independent modeling are twofold. First, model
mismatch can occur, especially when there are strong correlations
among the outputs. In fact, high-dimensional latent states in various

1The GPSSM considered in this paper keeps the same model capacity as
the ones with both transition and emission GPs while avoiding the severe
non-identifiability issue. One can refer to [9] (Section 3.2.1) for more details.

x0 x1 · · · xt−1 xt · · ·

· · · f1 · · · ft−1 ft · · ·

y1 · · · yt−1 yt · · ·

Fig. 1: Graphical model of GPSSM. The thick horizontal bar repre-
sents a set of fully connected nodes, i.e., the GP.
applications tend to be inherently dependent. For example, in navi-
gation and tracking applications, the latent states comprise physical
quantities such as displacement, acceleration, and velocity [1] that
are strongly correlated according to physic law. In such applications,
the independent outputs assumption will degenerate the learning and
inference performance. Second, the inductive bias cannot be trans-
ferred between outputs, which limits the model learning capacity [24],
especially when the latent states are only partially observed.

To explicitly model the dependency among outputs of the tran-
sition function, we propose to apply the linear model of coregional-
ization (LMC) [25, 26], which is a well-known, simple, yet practical
multiple-output GP framework that linearly mixes Q independent
latent GPs for modeling multiple dependent outputs simultaneously.
More specifically, as depicted in Fig. 2b, the dx transition outputs
{ft,d}dxd=1 are obtained by the linear combinations of Q indepen-
dent latent GPs, ht = {ht,q}Qq=1, where ht,q = hq(xt−1), hq(·) ∼
GP(0, kq(·, ·)), i.e.,

ft,d =fd(xt−1)=

Q∑
q=1

ad,q · hq(xt−1)=a>d ht, d=1, ..., dx, (6)

where ad = [ad,1,ad,2, ...,ad,Q]> ∈ RQ are the dimension-
specific coefficients that form the coregionalization matrix A =
[a1, ...,adx ]>. In this way, the Q latent GPs will learn a shared
knowledge (inductive bias) of the underlying dynamics, and ad

will adapt the behaviours for the dimension-specific output. Un-
der the LMC framework and the assumption of Q independent
latent GPs, the vector-valued transition function follows a Gaus-
sian process prior f(x) ∼ GP(µ(x),kθgp(x,x′)), where the
mean function is µ(x) = 0, and the multi-output kernel func-
tion kθgp(x,x′) has d2x entries, specifically, [kθgp(x,x′)]i,j =∑Q

q=1 ai,qaj,qkq(x,x′), i, j = 1, 2, ..., dx. Compared with the
classic (independent) GP modeling, the GP prior with LMC explicitly
models the correlation between different outputs (with extra matrix
multiplication operations). Thus, the inductive biases among outputs
can be transferred to improve the overall model learning and infer-
ence capacity, which is beneficial to, e.g., partially observable state
inference. Note that the new set of θgp includes the coregionalization
matrix A and the hyperparameters from all Q independent latent
GPs. It is also noteworthy that even though modeling the output
dependency improves the GPSSM flexibility, it also brings model
identifiability issues (i.e., given ft andA, the underlying ht may not
be inferred uniquely). An identifiable model is critical to state infer-
ence. The following corollary indicates that severe non-identifiability
can be eliminated by carefully selecting the Q parameter.
Corollary 1. The proposed output-dependent GPSSM does not com-
promise the model identifiability if Q ≤ dx and rank(A) = Q.
Proof. When Q ≤ dx and A is full column rank, given ft and
A for the underlying linear system Aht = ft, the estimate ĥt =
(A>A)−1A>ft gives an exact solution if true ht exists. Then, by
following the theorem in Section 3.2.1, [9], severe model idenfiability
issue can be solved.
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Fig. 2: Output-independent GPSSMs vs. output-dependent GPSSMs

Remark 1. When Q > dx, the output-dependent GPSSM is more
flexible, and is potentially beneficial to sequence forecasting (see
Section 4.2). However, for latent state inference purposes, Corollary
1 suggests setting Q ≤ dx, which can help avoid the model non-
identifiability and improve state inference performance.

3.2. Variational Learning and Inference
Performing inference for the GPSSM is generally intractable. Instead
of using Monte Carlo-based methods, we resort to variational infer-
ence methods for computational tractability and efficiency. For the
convenience of discussion, we denote ~x = {xt}Tt=0, ~y = {yt}Tt=1,
and ~f = {ft}Tt=1. To alleviate the computation cost of GP models,
we use the sparse GP method [27], which introduces a small set of
inducing points ~z = {zi}mi=1 and ~u = {ui,q}m,Q

i,q=1 to serve as the
surrogate of the associated GPs, where ui,q = hq(zi) ∈ R and
zi ∈ Rdx . Here, we assume the Q inducing outputs {ui,q}Qq=1 share
the inducing inputs zi, since all the latent GPs take the shared input
xt−1 at any time step t, as depicted in Fig. 2b. Sharing inducing
inputs between different latent GPs will also reduce the number of
variational parameters. Based on these settings, the joint distribution
of the output-dependent GPSSM augmented with inducing points is

p(~y, ~x,~f , ~u)=p(x0)

T∏
t=1

p(yt|xt)p(xt|ft)p(ft|xt−1, ~u)p(~u), (7)

where p(~u) =
∏Q

q=1 p({ui,q}mi=1) due to the independence assump-
tion. The distribution of the transition function outputs p(ft|xt−1, ~u)
are determined by the latent GPs p(ht|xt−1, ~u), where

p(ht|xt−1, ~u)=

Q∏
q=1

N (ht,q|ξht,q ,Ξht,q ), (8)

andN (ξht,q ,Ξht,q ) is the q-th GP posterior distribution with xt−1

as test input while (~z, {ui,q}mi=1) as training data, see Eqs. (2a) and
(2b). Therefore,

p(ft|xt−1, ~u)=

∫
ht

p(ft|ht) p(ht|xt−1, ~u)=N (ft|ξft ,Ξft), (9)

where ξft = Aξht , Ξft = AΞhtA
> and ξht = [ξht,1 , .., ξht,Q ]>,

Ξht = diag(Ξht,1 , ...,Ξht,Q).
The main idea behind the variational inference method is to ap-

proximate the intractable posterior distribution p(~x,~f , ~u|~y) using
a variational distribution q(~x,~f , ~u), leading to the evidence lower

bound (ELBO), L , Eq(~x,~f ,~u)

[
log p(~y,~x,~f ,~u)

q(~x,~f ,~u)

]
≤ log p(~y). Dif-

ferent choices of the variational distribution induce different EL-
BOs, hence different learning algorithms for GPSSM [9]. In this
paper, we choose the variational distribution q(~x,~f , ~u) in the form of
q(x0)

∏T
t=1 p(xt|ft)p(ft|xt−1, ~u)q(~u), where

q(~u) =

Q∏
q=1

N ({ui,q}mi=1|mq,Sq) = N (~u | ~m,S), (10)

and moreover the mean vector ~m = [m>1 , ...,m
>
Q]> ∈ RmQ, and

the covariance matrix S = diag(S1, ...,SQ) ∈ RmQ×mQ, are free
variational parameters. The variational distribution for the initial
state is parameterized by a recognition network with input, ~y, and
parameters, ζ, i.e., qζ(x0) = N (x0|mx0 ,Sx0), where mx0 ,Sx0

are the outputs of the recognition network [22]. Note that the form
of variational distribution selected in this paper is similar to the one
used in the probabilistic SSM [10]. However, instead of assuming
independent outputs for the transition function, the GPSSM prior as
well as the approximated posterior considered in this paper explicitly
construct the dependency among outputs by mixing Q latent GPs,
thus making the proposed model more realistic and flexible. After
some algebraic calculations, the corresponding ELBO becomes

L(θ) =

T∑
t=1

Eq(xt) [log p(yt|xt)]−KL [q(~u)‖p(~u)]

−KL [q(x0)‖p(x0)] ,

(11)

where the first term encourages decent samples drawn from the vari-
ational distribution q(xt) to fit the emission model well, while the
second and third terms regularize the initial state, and the posterior
distributions of the Q latent GPs thus the posterior of f(·), respec-
tively. The two latter terms can be computed analytically, however,
the expectation terms, Eq(xt) [log p(yt|xt)] , ∀t, need to be evalu-
ated by sampling method and reparametrization trick [28] due to
the intractability of q(xt) [10]. The sampling steps are described as
follows. By conditioning on the latent state xt−1, we have

q(xt|xt−1) =

∫
ft,~u

p(xt|ft)p(ft|xt−1, ~u)q(~u)

= N (xt |mt|t−1, St|t−1),

(12)

where mt|t−1 = Amht , St|t−1 = AShtA
> + Q, and mht =

[mht,1 , ...,mht,Q ]>,Sht = diag(Sht,1 , ...,Sht,Q) with{
mht,q = Kxt−1,~z K

−1
~z,~z mq,

Sht,q =Kxt−1,xt−1−Kxt−1,~z K
−1
~z,~z [K~z,~z − Sq]K−1

~z,~z K
>
xt−1,~z,

for any q. Note that here we omit the subscript q in the kernel
matrix of the q-th latent GP for notation brevity. Using Eq. (12) we
can recursively sample latent states xt, t = 1, 2, ..., T , by starting
from sampling x0 ∼ q(x0), so that the ELBO can be numerically
evaluated. Together with all, we apply stochastic gradient ascent
and use the Adam optimizer to maximize the lower bound L(θ)
over parameters θ = [ζ,~z, ~m,S,θgp,Q,R]. The gradient can be
propagated back through time owing to the chain rule sampling and
reparametrization trick [28], and the parameters will converge to a
stationary point.
Remark 2 (Computational Complexity). Typically, the number of
GP inducing points, m, is larger than the number of latent GPs, Q,
and the state dimension, dx. For a data sequence with the length of
T and assuming T �m>Q≥ dx, the computational complexity
of evaluating the ELBO (Eq. (11)) scales as O(TQm2+TQ2dx).
Compared with the output-independent GPSSM [10] that scales as
O(Tdxm

2), we can observe that only gentle computational complex-
ity increases in the output-dependent GPSSM (especially in the case
of Q=dx).

4. EXPERIMENTAL RESULTS
In this section, we show the performance of the proposed output-
dependent GPSSM (termed ODGPSSM) on one synthetic dataset and
five real system identification datasets. For comparison, we choose
two output-independent baseline models: 1) probabilistic recurrent
SSM (PRSSM) [10]; and 2) deep state-space model (DSSM) [3].
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Fig. 3: The latent space learned by two different GPSSMs

4.1. Synthetic Dataset
We first use a simple and stylized numerical 2-dimensional (2-D)
car tracking example provided in [1] (Example 4.3) to show the
importance of modeling dependency between the transition outputs.
More concretely, in this example, the underlying car dynamic is
characterized by the linear Gaussian state-space model (LGSSM),

xt =

[
I2 I2
0 I2

]
xt−1 + vt, vt ∼ N (0,Q),

yt = [I2,0] xt + et, et ∼ N (0,R),

where the partially observable state xt ∈ R4 consists of 2-D car
positions and 2-D velocities; yt is a noisy observation of the car
positions. For more details about this model, one can refer to [1]. Note
that the entries of the state vector, {xt,d}4d=1, are correlated due to the
linearity and Gaussianity of the state transition in the LGSSM. Hence,
by exploiting the correlations with the observed states {xt,d}2d=1, it
is possible to infer the unobserved ones, {xt,d}4d=3.

We use the underlying LGSSM to generate T=120 observations
~y = {y}Tt=1 for training the PRSSM [10] and the newly proposed
ODGPSSM. For both PRSSM and ODGPSSM, we adopt the follow-
ing initialization: 1) The initial state, x0 =[0, 0, 1,−1]>, is assumed
to be known, hence there is no need to train the recognition network;
2) The dimension of the latent state, dx, is set to be 4, and the number
of the GP inducing points m is set to be 20; 3) The GP transition
models are pretrained/initialized using 20 true latent state pairs with
the same training epochs. The number of the latent GP functions
for ODGPSSM remains the same as the state dimension, thus only
slightly increasing the overall computational complexity (see Remark
2). Fig. 3 depicts the learning results of ODGPSSM and PRSSM.
It can be observed that both PRSSM and ODGPSSM infer the first
two dimensions of the latent states well. However, the PRSSM fails
to capture the underlying dynamics in the 3rd and 4th unobserved
dimensions. This is due to the fact that the independent modeling in
PRSSM ignores the correlations between the states, resulting in the
fluctuations of the GP transition posterior around the zero-mean prior.
In contrast, ODGPSSM establishes the dependencies through the
LMC framework, making it capable of correctly learning the GP tran-
sition posterior and inferring the unobserved states by exploiting the
knowledge from the shared correlations and the first two dimensions
that are fully observed.

4.2. Real Datasets
Since the superiority of PRSSM compared to classic time-series
modeling approaches has been shown in [10], we will skip similar
comparisons due to space limitations. In this subsection, we only
compare ODGPSSM with its two competitors, PRSSM and DSSM,
on five real system identification datasets introduced in [10] (see [10]
for more details). For each dataset, the first half of a sequence is

1 2 3 4 5 6 7 8 9 10

Actuator 0.481929 0.484754 0.305417 0.2668459 0.3888848 0.259501 0.352628 0.326268 0.367079 0.4655241
Ballbeam 1.023001 1.083428 0.943353 0.8309742 0.9390742 0.85814 0.966119 0.872476 0.953355 0.9387181
Drive 1.052909 1.048886 1.045323 0.9945091 1.0446863 1.048134 1.043702 1.046498 1.047701 1.0488094
Dryer 0.563431 0.201891 0.151807 0.1171003 0.1514745 0.139005 0.108892 0.154204 0.12728 0.1629667
Gas Furnace    0.584796 0.348329 0.347351 0.3225627 0.3636301 0.322615 0.344614 0.342214 0.434668 0.4327546
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Fig. 4: Test performance of ODGPSSM under different values of Q

Table 1: Prediction RMSE comparison (on standardized test sets)
between the proposed ODGPSSM (with Q = 4) and its competitors.

Methods Actuator Ballbeam Drive Dryer Gas Furnace

DSSM 3.0752 2.6311 1.8417 2.7055 1.7746
PRSSM 0.3592 0.9082 1.0459 0.1334 0.3356

ODGPSSM 0.2668 0.8309 0.9945 0.1171 0.3225

used for training and the rest for testing. All datasets are standardized
using training sequence and the latent state dimension is set to be
dx = 4. More detailed model settings can be found in the accompany-
ing code online available at: https://github.com/zhidilin/ODGPSSM.
For DSSM, we refined the code from a public implementation at
http://pyro.ai/examples/dmm.html, and set the emission function to be
the same as the two GPSSMs. The test results are reported in Table 1,
where the root-mean-square error (RMSE) is averaged over 100-step
ahead forecasting.

From Table 1 we can observe that ODGPSSM consistently out-
performs PRSSM in terms of the prediction RMSE across all the
datasets, which convincingly illustrates the benefits of output depen-
dency modeling. It can also be observed that both ODGPSSM and
PRSSM outperform DSSM in terms of the prediction RMSE. The
reason is that both the transition function and the variational distri-
butions in DSSM are modeled by deep neural networks that require
big data to tune the large number of parameters. However, in our
case, the datasets are relatively small, e.g. the training set of the Gas
Furnance dataset is merely of length 148, which is insufficient to
support the DSSM learning. In contrast, GPSSMs inherit the merits
of GP, showing unique superiority in small dataset regimes.

Finally, we investigate the impact of Q in ODGPSSM, since
the number of latent GPs, Q, determines the model flexibility. The
results in Fig. 4 show that the prediction RMSE across almost all
the datasets reach the lowest points when Q=dx=4, even though
the models with Q> 4 is more flexible than the ones with Q =
4. This is probably because the additional parameters (additional
coregionalization coefficients and variational parameters) makes the
model unidentifiable and the learning more difficult. Future work will
attempt to remedy this problem by introducing sparse constraints on
the coregionalization coefficients and verify it on real data provided
by China Unicom.

5. CONCLUSION
In this paper, we propose an output-dependent GPSSM by explicitly
modeling the output dependency of GP transition using the well-
known, simple yet practical LMC framework. We also propose a
variational learning algorithm that only gently increases the compu-
tational complexity to learn the output-dependent GPSSM. Experi-
mental results show that modeling the output dependency in GPSSM
not only facilitates latent state inference when the latent state is par-
tially observed, but also makes the GPSSM more competent than its
competitors in terms of prediction.
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