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ABSTRACT

Recently, deep cross-modal hashing has gained increasing

attention. However, in many practical cases, data are dis-

tributed and cannot be collected due to privacy concerns,

which greatly reduces the cross-modal hashing performance

on each client. And due to the problems of statistical het-

erogeneity, model heterogeneity, and forcing each client to

accept the same parameters, applying federated learning to

cross-modal hash learning becomes very tricky. In this paper,

we propose a novel method called prototype-based layered

federated cross-modal hashing. Specifically, the prototype

is introduced to learn the similarity between instances and

classes on server, reducing the impact of statistical hetero-

geneity (non-IID) on different clients. And we monitor the

distance between local and global prototypes to further im-

prove the performance. To realize personalized federated

learning, a hypernetwork is deployed on server to dynami-

cally update different layers’ weights of local model. Exper-

imental results on benchmark datasets show that our method

outperforms state-of-the-art methods.

Index Terms— Federated Learning, Learning to Hash,

Cross-Modal Retrieval, Prototype Learning

1. INTRODUCTION

With a large number of texts, images, videos, and other

media data being generated, it is particularly important to

conduct similarity search for multimedia data reasonably and

effectively [1, 2, 3]. In real applications, users often need to

use data from one modality (e.g., text modality) to retrieve

relevant data from another modality (e.g., image modality).

Benefiting from high retrieval speed and low storage cost,

cross-modal hashing attracts increasing attention. Cross-

modal hashing (CMH) maps high-dimensional raw data to

short binary hash codes by learning hash functions, while

maintaining the similarity of the original samples in Ham-

ming space. Although cross-modal hashing [4, 5, 6] has

achieved satisfactory performance so far, they are encoun-

tering some practical problems due to the growing concern

about privacy protection. In many real-world situations,

multimedia data is scattered across multiple silos and those

distributed data may not be directly shared or collected due

to privacy concerns and regulations. This makes each client

use only its own small amount of data for independent local

training, which significantly degrades cross-modal hashing

performance compared to traditional centralized training. To

address the above issues, researchers try to combine federated

learning [7, 8, 9, 10] with cross-modal hashing.

At present, federated cross-modal hashing is intractable

due to the following challenges. 1) Statistical heterogeneity.

The local data distribution of each client varies with its loca-

tion and preferences, resulting in the data of each client being

independent but not obeying the same distribution (Non-IID)

[11, 12]. 2) Model heterogeneity. Traditional federated

learning requires consistency of models across all clients,

which is unrealistic in practical and complex applications

[13, 14]. Different clients desire different models because

their own application scenarios may differ. However, differ-

ent models may cause huge difficulty for the communication

of parameters between clients and central server. 3) Person-

alized federated learning. Most of prior efforts let central

server acquire and process parameters from all clients first

and then return the same parameters [15, 16] to all clients.

The policy that each client is forced to accept the same pa-

rameters prevents each client from better adapting to its own

local data, resulting in sub-optimal performance.

To address above-mentioned challenges, we propose a

new federated cross-modal hashing method called Prototype-

based Layered Federated Cross-Modal Hashing (PLFedCMH

for short). Specifically, on the basis of class-wise hash codes,

PLFedCMH introduces class prototypes generated by modal-

ity networks to assist the learning of supervised hash func-

tions, reducing the impact of statistical heterogeneity (non-

IID) on different clients. Besides, the server only needs to

aggregate local class prototypes and does not need to aggre-

gate model parameters. There is no need to consider the pa-

rameter aggregation problem caused by model heterogeneity.

Last but not least, PLFedCMH is designed with personalized

federated strategy. Through the hypernetwork introduced by

the server, the weights of different layers on the client are

dynamically updated, which can realize personalized param-

eter customization for different clients. To summarize, the

main contributions of this paper are as follows. 1) To con-

sider privacy concerns, a new federated method PLFedCMH

is elaborately designed for training cross-modal hashing with
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distributed data. 2) The proposed method could simulta-

neously take statistical heterogeneity, model heterogeneity,

and personalized federated learning into consideration. 3)

Experimental results on benchmark datasets show that our

method can achieve significantly improved accurate in IID,

nonIID-equal, and nonIID-unequal scenarios.

2. PROPOSED METHOD

2.1. Problem Definition and Notations

Following existing cross-modal hashing literature and with-

out loss of generality, we formulate our model in the context

of image-text retrieval task. In this paper, we propose a new

federated learning method for cross-modal hashing, which

could support hashing model training based on different si-

los’ data without privacy and security concerns.

Assuming there are N clients, i-th client possesses its

own dataset Di = {(x
(i)
j , t

(i)
j , l

(i)
j )}mi

j=1 (1 ≤ i ≤ N ), where

mi denotes the number of samples, xj
(i) (tj

(i)) represents

image modality (text modality) of the j -th sample on client i,

lj
(i) is the label vector. The size of all clients’ datasets can be

obtained by M =
∑N

i=1 mi .

As our method introduces and leverages prototypes of

classes, we let P be the class prototype and then have both

local prototypes Plocal : {Plocal1 ,Plocal2 , · · · ,PlocalN } and

global prototype Pglobal . Considering both image and text

modalities, we have Plocalxi
and Plocalti

on client i, while

Pglobalx and Pglobalt on server. Specifically, local prototypes

are output values of modality networks’ last layer without

using activation function. Global prototype is the average of

all local prototypes, which is computed on the server.

2.2. Similarity Preserving based on Local Data

As the core of learning to hash is to preserve the similarity,

hash codes of those instances, which belong to the same class,

should be relatively similar. In other words, hash codes of in-

stances have direct relation with their labels L ∈ {0 , 1}M×c ,

where c is the number of classes for all data samples M .

To construct and preserve such relation, we first introduce

hash codes of classes which is denoted as Y ∈ {−1 , 1}r×c

where r is the hash code length. Then, we define the fol-

lowing optimization problem: min{B(i),Y(i)} ‖rL
(i) −

B
(i)T

Y
(i)‖2F , where superscript i denotes i-th client, L

(i)

is its label matrix, B(i) ∈ {−1, 1}r×mi is the hash codes,

and Y
(i) ∈ {−1, 1}r×c is the hash codes of classes on the

i-th client. The above equation could force the hash codes of

samples which share same labels to be more similar and thus

achieve the similarity-preserving goal.

2.3. Global Information Embedding

Sec.2.2 works only with clients’ own local data. Under the

influence of statistical heterogeneity (non-IID), a single client

cannot well consider the overall class characteristics of the

entire dataset D. If no remedy is taken, the local client may

get stuck in its seen classes and cannot handle samples of un-

seen classes which are distributed on other clients.

To overcome such limitation caused by non-IID, we try to

embed global information into local training. Thus, we define

the following optimization function which let the local hash

codes interact with global class prototypes: minB(i) ‖rL
(i)
i −

B
(i)T

Pglobal‖
2
F , where B(i) ∈ {−1, 1}r×mi is the hash code

matrix of samples on the i-th client, Pglobal is class proto-

types aggregated on the server in last federated round.

In addition, we also try to keep the consistency of class

prototypes between one local client and the global server.

This could reduce the influence of class distribution dif-

ferences on local training and improve the accuracy of local

cross-modal hashing retrieval. The loss function is as follows,

O1 = MSE(Plocali ,Pglobal), (1)

where MSE(·) is the mean square error and Plocali is the

local class prototypes generated in current federated round.

2.4. Hash Learning for Local Clients

As most recent cross-modal hashing methods are deep ones,

we could freely assume that there exist image and text modal-

ity networks. On the i-th client, let F(i) = f(x(i);θθθxi
) de-

note the extracted image features, where θθθxi
represents the

parameter of image modality network. For text modality, let

G
(i) = g(t(i);θθθti) and θθθti represent the output and the pa-

rameter of text modality network of client i.

Then, as deep hashing could synchronously conduct hash

code learning and feature extraction, based on Sec.2.2 and

Sec.2.3, we could give the following equation,

O2 = α(‖rL(i) − F
(i)T

Y
(i)‖2F + ‖rL(i) −G

(i)T
Y

(i)‖2F )+

β(‖rL(i) − F
(i)T

Pglobalx‖
2
F + ‖rL(i) −G

(i)T
Pglobalt‖

2
F )

+ µ(‖B(i) − F
(i)‖2F + ‖B(i) −G

(i)‖2F ),

s.t. B
(i) ∈ {−1, 1}r×mi,Y(i) ∈ {−1, 1}r×c,

(2)

where α, β, and µ are the trade-off parameters.

2.5. Overall Loss and Optimization for Local Clients

To make the to-be-learnt hash codes preserve both intra-client

similarity and inter-client similarity, we combine Eq.(1) and

Eq.(2). Besides, as PLFedCMH is a federated method which

tries to help existing CMH accommodate to distributed sce-

nario, we should include the original loss of deep CMH

Ohash . Thus, the overall objective function is,

min O1 + ηO2 + ξOhash , (3)

where η and ξ are trade-off parameters.



The optimization of O1 + ηO2 could easily follow the

strategy of most existing deep CMH methods, that is itera-

tively optimizing one variable with the others fixed. When up-

dating network parameters θθθxi
and θθθti , the back-propagation

algorithm could be leveraged. B
(i) could be computed by

B
(i) = sign(F(i) +G

(i)). We could use the optimization of

[5] to discretely generate Y(i) bit by bit.

Algorithm 1 PLFedCMH Algorithm

Input: {D1, · · · , DN }. Total communication rounds R. Hy-

pernetwork learning rate γ.

Output: Trained personalized models {θ̄θθx1 , · · · , θ̄θθxN
} and

{θ̄θθt1 , · · · , θ̄θθtN}.
Server executes:

1: Initialization

2: for each federated round r ∈ {1, · · · , R} do

3: for each client i in parallel do

4: θ̄θθ
(r+1)
i = {θθθ1i , θθθ

2
i , · · · , θθθ

K
i } ∗HNi(si, ζζζi)

5: ∆θθθxi
,∆θθθti ← LocalUpdate(θ̄θθ

(r+1)
i )

6: {θθθ1xi
, θθθ

2
xi
, · · · , θθθKxi

}
(r+1)

= θθθxi

(r) +∆θθθxi

7: {θθθ1ti , θθθ
2
ti
, · · · , θθθKti }

(r+1)
= θθθti

(r) +∆θθθti

8: s
(r+1)
i = s

(r)
i − γ∇

s
(r)
i

Eq.(3)

9: ζ
(r+1)
i = ζ

(r)
i − γ∇

ζ
(r)
i

Eq.(3)

10: end for

11: Update global prototypes

12: end for

LocalUpdate (θ̄θθ
(r+1)
i ):

13: Receive (θ̄θθ
(r+1)
i ) from server.

14: Set θθθxi
= (θ̄θθ

(r+1)
xi

), θθθti = (θ̄θθ
(r+1)
ti

)
15: for each local epoch do

16: for batch(x(i), t(i), l(i)) ∈ Di do

17: Update local prototypes. Update θθθxi
, θθθti , Y, and B

18: end for

19: end for

20: return ∆θθθxi
= θθθxi

− (θ̄θθ
(r+1)
xi

),∆θθθti = θθθti − (θ̄θθ
(r+1)
ti

)

2.6. Generating layered weights through the server

For each client’s local image model and text model, we set up

the corresponding hypernetworks on the server side, which

are composed of some fully connected layers.

Taking the image modality of i-th client as an example,

we have the hypernetwork HNxi (sxi , ζζζxi ) [17, 18]. The in-

put of the hypernetwork is the embedding vector sxi , and ζζζxi

is the parameter of the hypernetwork. The model parame-

ters of the image modality before updating on the server are

θθθxi = {θθθ
1
xi
, · · · , θθθkxi , · · · , θθθ

K
xi
}, where θθθkxi

are the parameters

of k -th layer (1 ≤ k ≤ K). When the parameters of the client

image modality are uploaded to the server, the server updates

the layered parameters of the client through the image modal-

ity hypernetwork HNxi (sxi , ζζζxi ): θ̄θθxi
= {θ̄θθ

1
xi
, · · · , θ̄θθ

K

xi
} =

{θθθ1xi
, · · · , θθθKxi

} ∗ HNxi
(sxi

, ζζζxi
). So the parameters θθθxi

of

the i-th client are updated to θ̄θθxi
before the next round of lo-

cal training. According to the chain rule, we can have the

gradient of si and ζζζ i from Eq. (3).

2.7. Overall Algorithm and Framework of PLFedCMH

Algorithm 1 shows a federated round of the proposed PLFed-

CMH. 1) On the server side, two hypernetworks correspond-

ing to different modality networks are used to generate the

layered weights of all clients. 2) The server transmits the

updated client layered weights and the aggregated abstract

global class prototypes to clients. 3) The client updates the

personalized model parameter values for modality networks

after receiving the layered weights. 4) On the local client, fea-

tures of the private samples are extracted through the image

and text modality networks to obtain the rich semantic infor-

mation of samples and the class prototypes of the local client.

5) After local training, the local model parameter updates and

the local class prototypes for both modalities are uploaded to

the server. 6) The server aggregates the local prototypes to ob-

tain global prototypes. And the hypernetworks calculate the

layered weights through the gradient change of the model.

3. EXPERIMENT

3.1. Experiment settings

Datasets. Following existing literature [20, 21], two bench-

mark datasets are chosen for evaluation, i.e., FashionVC [22]

and Ssense [20]. FashionVC is from online fashion commu-

nity Polyvore. After removing categories with less than 25

samples, FashionVC contains 19,862 image-text pairs with

hierarchical labels. Ssense is also from the fashion field,

which contains 15,696 hierarchically labeled image-text pairs

after removing categories with less than 70 samples. In this

paper, only the most fine-grained part of the hierarchical

labels is employed for evaluation.

Following setting in [19], three ways to partition the data

set are used, i.e., nonIID-equal, nonIID-unequal, and IID.

NonIID-equal and nonIID-unequal are cases of statistical het-

erogeneity. In the nonIID-equal case, each client has a dif-

ferent data distribution, and the classes may overlap or not

overlap at all between different clients. However, the number

of categories is the same for each client, and the number of

samples in each category is also the same. Given the different

number of samples in each class in the dataset, we needed to

accommodate the smaller classes in order to achieve nonIID-

equal, so the total number of samples from all clients we used

is 18% to 20% of the entire dataset. In the nonIID-unequal

case, the dataset is 100% used by the clients, and the number

of samples per class is completely different. In the IID case,

data is shuffled and then evenly divided among the clients,

which have the same data distribution.



Table 1. The MAP results of various methods on FashionVC and Ssense with different splits over clients.

FashionVC

nonIID-equal nonIID-unequal IID

Image-to-Text Text-to-Image Image-to-Text Text-to-Image Image-to-Text Text-to-Image

16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit

centralized 0.766 0.762 0.756 0.937 0.949 0.946 0.766 0.762 0.756 0.937 0.949 0.946 0.766 0.762 0.756 0.937 0.949 0.946

FedAvg [11] 0.398 0.583 0.637 0.378 0.583 0.632 0.584 0.712 0.741 0.753 0.912 0.932 0.544 0.724 0.743 0.666 0.903 0.926

FedCMR [13] 0.180 0.404 0.372 0.159 0.302 0.268 0.577 0.620 0.661 0.576 0.613 0.707 0.255 0.679 0.677 0.229 0.767 0.712

FedProx [14] 0.261 0.584 0.643 0.228 0.586 0.633 0.548 0.710 0.747 0.706 0.900 0.930 0.603 0.720 0.741 0.770 0.901 0.915

FedProto [19] 0.297 0.644 0.656 0.284 0.659 0.677 0.603 0.744 0.760 0.742 0.936 0.947 0.678 0.743 0.761 0.858 0.934 0.942

PLFedCMH 0.614 0.652 0.657 0.631 0.671 0.702 0.710 0.766 0.763 0.876 0.941 0.947 0.731 0.761 0.769 0.900 0.947 0.951

Ssense

nonIID-equal nonIID-unequal IID

Image-to-Text Text-to-Image Image-to-Text Text-to-Image Image-to-Text Text-to-Image

16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit

centralized 0.953 0.970 0.968 0.973 0.987 0.985 0.953 0.970 0.968 0.973 0.987 0.985 0.953 0.970 0.968 0.973 0.987 0.985

FedAvg [11] 0.690 0.911 0.929 0.662 0.914 0.934 0.865 0.942 0.955 0.886 0.971 0.974 0.822 0.951 0.962 0.837 0.973 0.981

FedCMR [13] 0.155 0.343 0.566 0.145 0.240 0.379 0.807 0.815 0.806 0.760 0.826 0.779 0.738 0.821 0.941 0.732 0.774 0.941

FedProx [14] 0.791 0.908 0.903 0.729 0.904 0.888 0.831 0.947 0.957 0.855 0.971 0.975 0.871 0.948 0.960 0.894 0.973 0.980

FedProto [19] 0.827 0.924 0.917 0.834 0.927 0.919 0.936 0.953 0.960 0.973 0.979 0.980 0.872 0.956 0.959 0.895 0.980 0.983

PLFedCMH 0.872 0.932 0.937 0.873 0.946 0.953 0.947 0.956 0.958 0.977 0.981 0.982 0.957 0.961 0.963 0.981 0.983 0.984

Table 2. The MAP results on Ssense.

Method
Image-to-Text Text-to-Image

16bit 32bit 64bit 16bit 32bit 64bit

PLFedCMH 0.947 0.956 0.958 0.977 0.981 0.982

PFedCMH 0.938 0.952 0.957 0.963 0.978 0.980

LFedCMH 0.938 0.940 0.951 0.965 0.966 0.976

Experiment details. As this paper focuses on feder-

ated learning for CMH, we utilized existing SOTA SHDCH

[21] for ours and all federated baselines. The hypernetworks

for both modalities contain four fully-connected layers with

ReLU activation function. The hyper-parameters are set as

follows: α = 0.5, β = 0.5, µ = 10, η = 10−5, and ξ = 1.

The learning rate of modality networks is 0.0001 and the

learning rate of hypernetworks is 0.001.

Evaluation metrics. Two cross-modal retrieval tasks are

conducted. “Image-to-Text” task utilizes an image as a query

to retrieve right texts, and “Text-to-Image” task is to retrieve

desired images with a text query. We adopted the widely used

Mean Average Precision (MAP) to evaluate the performance,

where higher values indicate better performance.

3.2. Comparison with Baselines

The results of MAP values on FashionVC and Ssense datasets

under nonIID and IID settings are presented in Table 1. We

compared the MAP values of PLFedCMH with several SOTA

baselines, including FedAvg [11], FedCMR [13], FedProx

[14] and FedProto [19]. Furthermore, results of “centralized”

are also provided, which denotes the result of accumulating

all data learned on a single server and is the upper bound of

the federated learning algorithm.

As found from Table 1, MAP values of all baselines

with 16-bit hash codes under nonIID-equal setting can only

reach less than 40% of centralized’s performance due to poor

characterization capability of short-bit hash codes, while our

method reaches a MAP value of 61.4%. One possible rea-

son is that our method introduces class prototypes to assist

in the learning of hash codes, which reduces the effect of

statistical heterogeneity on different clients. Besides, our

method achieves the best results in most cases, which implies

the effectiveness of using prototypes to learn the similarity

between instances and classes on the server.

3.3. Ablation experiments

To fully validate the performance of PLFedCMH, two vari-

ants are designed. The first variant removes layered update

weights on the server to different clients, which is named

PFedCMH. The other variant is termed LFedCMH, which

excludes the prototypes. Comparison results with nonIID-

unequal split are listed in Table 2. From those tables, we

can find our PLFedCMH could perform better than two de-

signed variants. Such phenomena reveal that both updating

layered parameters and using prototypes to learn the similar-

ity between instances and classes on the server are effective.

4. CONCLUSION

In this paper, we propose a novel federated learning method

PLFedCMH for cross-modal hashing with distributed data.

We introduce class prototypes generated by modal networks

to assist the hash learning, reducing the impact of statisti-

cal heterogeneity (non-IID) on different clients. At the same

time, distance between local and global prototypes is consid-

ered to improve the performance. The server dynamically

updates the weights of different layers of the client, which

can realize personalized parameter customization for differ-

ent clients. On the other hand, the server only needs to ag-

gregate local category prototypes without aggregating model

parameters, reducing the impact of model heterogeneity. Ex-

perimental results show that the proposed method achieves

the best performance on benchmark datasets.
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