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ABSTRACT

Remote sensing images are known of having complex back-
grounds, high intra-class variance and large variation of
scales, which bring challenge to semantic segmentation.
We present LoG-CAN, a multi-scale semantic segmenta-
tion network with a global class-aware (GCA) module and
local class-aware (LCA) modules to remote sensing images.
Specifically, the GCA module captures the global represen-
tations of class-wise context modeling to circumvent back-
ground interference; the LCA modules generate local class
representations as intermediate aware elements, indirectly
associating pixels with global class representations to reduce
variance within a class; and a multi-scale architecture with
GCA and LCA modules yields effective segmentation of ob-
jects at different scales via cascaded refinement and fusion
of features. Through the evaluation on the ISPRS Vaihingen
dataset and the ISPRS Potsdam dataset, experimental results
indicate that LoG-CAN outperforms the state-of-the-art meth-
ods for general semantic segmentation, while significantly
reducing network parameters and computation. Code is
available at https://github.com/xwmaxwma/rssegmentation.

Index Terms— Semantic segmentation, remote sensing,
class representations

1. INTRODUCTION

Semantic segmentation of remote sensing images aims to as-
sign definite classes to each image pixel, which makes im-
portant contributions to land use, yield estimation, and re-
source management [1–3]. Compared to natural images, re-
mote sensing images are coupled with sophisticated charac-
teristics (e.g., complex background, high intra-class variance,
and large variation of scales) that potentially challenge the se-
mantic segmentation.

Existing methods of semantic segmentation based on con-
volutional neural networks (CNN) focus on context modeling
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[4–7], which can be categorized into spatial context model-
ing and relational context modeling. Spatial context modeling
methods, such as PSPNet [4] and DeepLabv3+ [8], use spa-
tial pyramid pooling (SPP) or atrous spatial pyramid pooling
(ASPP) to integrate spatial contextual information. Although
these methods can capture the context dependencies with ho-
mogeneity, they disregard the differences of classes. There-
fore, unreliable contexts may occur when a general semantic
segmentation method processes remote sensing images with
complex objects and large spectral differences.

Regarding the relational context modeling, non-local neu-
ral networks [5] compute the pairwise pixel similarities in
the image using non-local blocks for weighted aggregation,
and DANet [6] adopts spatial attention and channel atten-
tion for selective aggregation. However, the dense attention
operations used by these methods enable a large amount of
background noise given the complex background of remote
sensing images, leading to the performance degradation in
semantic segmentation. Recent class-wise context modeling
methods, such as ACFNet [9] and OCRNet [10], integrate
class-wise contexts by capturing the global class represen-
tations to partially prevent the background inference caused
by dense attentions. Despite the fact that these methods have
achieved ideal performance in semantic segmentation on nat-
ural images, the performance on remote sensing images re-
mains problematic, specifically for high intra-class variance
that leads to the large gap between pixels and the global class
representations. Therefore, introducing local class represen-
tations may address this issue.

Given the above observations, we design a global class-
aware (GCA) module to capture the global class representa-
tions, and local class-aware (LCA) modules to generate the
local class representations. In particular, local class represen-
tations are used as intermediate aware elements to indirectly
associate pixels with global class representations, which al-
leviates the complex background and the high intra-class
variance of remote sensing images. Both modules are in-
tegrated into LoG-CAN, a semantic segmentation network
with a multi-scale design that improves the large variation of
scales issue of remote sensing images.

The primary contributions of this paper are summarized
as follows:
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Fig. 1. Architecture of LoG-CAN with GCA and LCA modules.

• a novel local class-aware module using the local class
representations for class-wise context modeling;

• a multi-scale semantic segmentation network integrat-
ing both local and global class-aware modules;

• the state-of-the-art performance on two benchmark
datasets for aerial images and a significant reduction of
the number of parameters and computational efforts.

2. METHOD

2.1. Overall Architecture

The proposed LoG-CAN has an encoder-decoder architecture
(as shown in Fig. 1). The encoder uses ResNet50 [11] as
the backbone for multi-scale feature extraction, and the de-
coder consists of a global class-aware (GCA) module and
local class-aware (LCA) modules to refine multi-scale fea-
ture representations from the backbone via class-wise context
modeling. Specifically, each residual block i of the four ex-
tracts multi-scale feature representations Ri from the input
image; the feature representations Rg from the last residual
block are processed by the GCA module to obtain the inter-
mediate global class representations C′g . Then, each Ri and
the i+1-th LCA module’s output are processed with feature
mapping and concatenation to reach intermediate feature rep-
resentations R′. In addition, the feature representations R
and the class representations Cg input to the LCA module are
obtained via feature mapping and class mapping fromR′ and
C′g . Being refined by the cascaded LCA modules, the feature
representations at different spatial scales are element-wisely

summed and quadruply upsampled for the semantic segmen-
tation output.

Note that our design of feature mapping and class map-
ping, which are implemented respectively by a 3 × 3 convo-
lution layer and a 1 × 1 convolution layer, enables the fol-
lowing two effects: (1) the multi-scale feature representations
and class representations further interact with each other in
a specific feature space after mapping; (2) mapping reduces
the feature channels of both representations, creating a lighter
structure that contains fewer model parameters and computa-
tion without degrading the model performance.

2.2. Global Class-Aware Module

Motivated by [10], we design a GCA module to capture the
global class representations. With feature representations
Rg ∈ RC′×H′×W ′

that contain rich semantic information,
the distribution of class probability Dg is obtained as follows,

Dg = H(Rg), (1)

where Dg is a matrix of size K × H ′ × W ′ and K is the
number of classes. H is implemented by two consecutive 1×1
convolution layers. Then, the global class representations C′g
is defined as follows,

C′g = DK×(H′×W ′)
g ⊗R(H′×W ′)×C′

g , (2)

where C′g is a matrix of size K × C ′.

2.3. Local Class-Aware Module

For remote sensing images, class-wise context modeling that
only uses the global class representations circumvents the in-



Table 1. Effectiveness comparison with the state-of-the-art methods on the test set from the ISPRS Vaihingen dataset. Per-class
best performance is marked in bold.

Method Imp. Sur. Building Low Veg. Tree Car AF mIoU OA

PSPNet [4] 91.38 94.20 83.05 88.71 75.02 86.47 76.78 89.36
DeepLabv3+ [8] 91.63 94.09 82.51 88.00 77.66 86.77 77.13 89.12

DANet [6] 91.38 94.10 83.09 89.02 76.80 86.88 77.32 89.47
Semantic FPN [12] 91.78 94.37 82.87 89.44 79.45 87.58 77.94 89.86

FarSeg [13] 92.13 94.57 82.87 88.74 81.11 87.88 79.14 89.57
OCRNet [10] 92.87 95.14 84.32 89.23 84.52 89.22 81.71 90.47
LANet [14] 92.41 94.90 82.89 88.92 81.31 88.09 79.28 89.83
BoTNet [15] 92.22 94.48 83.97 89.57 82.93 88.63 79.89 90.16
MANet [16] 93.02 95.47 84.64 89.98 88.95 90.41 82.71 90.96

UNetFormer [17] 92.70 95.30 84.90 90.60 88.50 90.40 82.70 91.00

LoG-CAN (Ours) 93.71 96.64 85.89 90.93 90.16 91.46 84.13 91.97

terference of noise caused by intensive attention operations.
However, it can potentially lead to considerable semantic dif-
ferences between pixels and the global class representations
due to the insufficient consideration of high intra-class vari-
ance, which degenerates the semantic segmentation perfor-
mance. In this regard, we exploit the local class representa-
tions as an intermediate awareness element to capture the re-
lationship between pixels and the local class representations
and aggregate this relationship with the global class represen-
tations for class-wise context modeling.

For the feature representations R ∈ RC×H×W , we de-
ploy a pre-classification operation for the corresponding dis-
tribution D ∈ RK×H×W . In particular, we split R and D
along the spatial dimension to get Rl and Dl, followed by
calculating the local class representations Cl as follows,

Cl = D(Nh×Nw)×K×(h×w)
l ⊗R(Nh×Nw)×(h×w)×C

l , (3)

where h and w represent the height and width of the selected
local patch, Nh = H

h , and Nw = W
w . The corresponding

affinity matrix Rr, which represents the similarity between
the pixel and the local class representations, is obtained as
follows,

Rr = R(Nh×Nw)×(h×w)×C
l ⊗ C(Nh×Nw)×C×K

l . (4)

Finally, we utilize Rr to associate the global class repre-
sentations Cg and acquire the augmented representations Ro

,
Ro = ψ(R(Nh×Nw)×(h×w)×K

r ⊗ CK×Cg ), (5)

where ψ is a function that puts the per-local enhanced repre-
sentations back in place inR.

3. EXPERIMENTS

We implemented the proposed method and evaluated LoG-
CAN on the ISPRS Vaihingen dataset and the ISPRS Pots-
dam dataset using three common metrics: average F1-score

(AF), mean Intersection-over-Union (mIoU), and overall ac-
curacy (OA). ISPRS Vaihingen dataset [18] includes 33 true
orthophoto (TOP) tiles and the corresponding digital surface
model (DSMs) collected from a small village, where the im-
age size varies from 1996 × 1995 to 3816 × 2550 pixels and
the ground truth labels comprise six land-cover classes (i.e.,
impervious surfaces, building, low vegetation, tree, car, and
clutter/background). We used 16 images for training and the
remaining 17 for testing. ISPRS Potsdam dataset [18] in-
cludes 38 TOP tiles and the corresponding DSMs collected
from a historic city with large building blocks. All images
have the same size of 6000×6000 pixels and the ground truth
labels comprise the same six land-cover classes as the ISPRS
Vaihingen dataset. We used 24 images for training and the
remaining 14 for testing.

3.1. Implementation Details

We selected ResNet-50 [11] pretrained on ImageNet as the
backbone for all experiments. The optimizer was SGD with
batch size of 8, and the initial learning rate was set to 0.01
with a poly decay strategy and a weight decay of 0.0001. Fol-
lowing previous work [14, 16], we randomly cropped the im-
ages from both datasets to produce 512 × 512 patches, and
the augmentation methods, such as random scale ([0.5, 0.75,
1.0, 1.25, 1.5]), random vertical flip, random horizontal flip
and random rotate, were adopted in the training process. The
number of epochs was set to 150 with the ISPRS Vaihingen
dataset and 80 with the ISPRS Potsdam dataset.

3.2. Evaluation and Analysis

As shown in Table 1, the proposed method outperformed
other state-of-the-art methods on the ISPRS Vaihingen dataset
in AF, mIoU, and OA. In particular, our LoG-CAN achieved
the AF of 91.46% and the mIoU of 84.13%, even higher than
MANet [16] and UNetFormer [17], showing that our design



Table 2. Effectiveness comparison with the state-of-the-art
methods on the test set from the ISPRS Potsdam dataset. Per-
class best performance is marked in bold.

Method AF mIoU OA

PSPNet [4] 89.98 81.99 90.14
DeepLabv3+ [8] 90.86 84.24 89.18

DANet [6] 89.60 81.40 89.73
Semantic FPN [12] 91.53 84.57 90.16

FarSeg [13] 91.21 84.36 89.87
OCRNet [10] 92.25 86.14 90.03
LANet [14] 91.95 85.15 90.84
BoTNet [15] 91.77 84.97 90.42
MANet [16] 92.90 86.95 91.32

UNetFormer [17] 92.80 86.80 91.30

LoG-CAN (Ours) 93.53 87.69 92.09

Input GT PSPNet MANet LoG-CAN

Fig. 2. Example outputs from the LoG-CAN and other meth-
ods on the ISPRS Vaihingen dataset. Best viewed in color and
zoom in.

on class-wise context modeling has greater effectiveness. As
shown in Table 2, our LoG-CAN also reached outstanding
performances in all metrics on the ISPRS Potsdam dataset.
Fig. 2 shows example result outputs from our LoG-CAN,
PSPNet, and MANet. In particular, the proposed method not
only better preserves the integrity and regularity of semantic
objects, but also improves the segmentation performance of
small objects.

To validate the lightness of our method, we compare our
LCA module with several classical context aggregation mod-
ules, including the number of parameters measured in mil-
lion (M), the floating-point operations per second (FLOPs)
measured in giga (G), and the memory consumption mea-
sured in megabytes (MB). All inputs were set to the size of
2048 × 128 × 128 to ensure the comparison’s fairness. As
shown in Table 3, the LCA module enables significantly less
number of parameters and lower computation compared to
PPM [4]. From the perspective of the entire network’s struc-
ture, our LoG-CAN only needs 60% of the parameters and
25% of the GFLOPs compared to PSPNet [4], which suggests
its design as a lightweight method.

We investigated if the number of patches in the LCA mod-

Table 3. Computational complexity comparison with other
popular context aggregation modules. Per-class best perfor-
mance is marked in bold.

Method Params (M) FLOPs (G) Memory (MB)

PPM [4] 23.1 309.5 257
ASPP [8] 15.1 503.0 284
DAB [6] 23.9 392.2 1546
OCR [10] 10.5 354.0 202

PAM+AEM [14] 10.4 157.6 489
ILCM+SLCM [19] 11.0 180.6 638

KAM [16] 5.3 85.9 160

LCA (Ours) 0.8 11.9 53

Fig. 3. Plot of AF against the number of patches on the
ISPRS Vaihingen dataset (yellow) and the ISPRS Potsdam
dataset (blue)

ule has any impact on the results. As shown in Figure 3, the
best result was obtained on each dataset with the number of
patches being set to 16. Besides, when the number of patches
was set to 1, the local class representations degenerated to the
global class representations, resulting into relatively unsatis-
factory performances. These findings indicate that local class
awareness can effectively improve class-wise context model-
ing.

4. CONCLUSION

In this paper, we introduce LoG-CAN for semantic segmen-
tation of remote sensing images. Our method effectively re-
solves the problems due to complex background, high intra-
class variance, and large variation of scales in remote sensing
images by combining the global and local class representa-
tions for class-wise context modeling with a multi-scale de-
sign. According to the experimental results, LoG-CAN has
greater effectiveness than the state-of-the-art general methods
for semantic segmentation, while requiring less network pa-
rameters and computation. The proposed method provides a
better trade-off between efficiency and accuracy.
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