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ABSTRACT

Unpaired text and audio injection have emerged as dominant meth-
ods for improving ASR performance in the absence of a large labeled
corpus. However, little guidance exists on deploying these methods
to improve production ASR systems that are trained on very large su-
pervised corpora and with realistic requirements like a constrained
model size and CPU budget, streaming capability, and a rich lattice
for rescoring and for downstream NLU tasks. In this work, we com-
pare three state-of-the-art semi-supervised methods encompassing
both unpaired text and audio as well as several of their combinations
in a controlled setting using joint training. We find that in our setting
these methods offer many improvements beyond raw WER, includ-
ing substantial gains in tail-word WER, decoder computation during
inference, and lattice density.

1. INTRODUCTION

Methods for learning from large-scale supervised datasets have
been the primary driver of progress in speech processing from the
HMM/GMM era [1] well into the era of deep learning [2, 3, 4].
However, as the scope of ASR research has expanded into challeng-
ing settings such as low-resource languages and difficult acoustic
conditions, it has become difficult to gather large-scale in-domain
supervised datasets [5]. In recent years, much of the speech com-
munity’s attention has moved to alternatives to purely supervised
learning.

Semi-supervised learning has emerged as a powerful paradigm
for addressing contemporary problems in speech recognition [6]. In
a semi-supervised training scheme, unpaired speech and/or text ex-
amples supplement a supervised dataset to provide greater acous-
tic/language coverage. A broad literature has emerged exploring var-
ious mechanisms for incorporating speech-only and text-only data
into ASR training (see Section 2).

Semi-supervised learning with both audio and text has yielded
very strong results on benchmark ASR tasks, motivating interest in
these methods for large-scale, production applications. However,
published results generally report on datasets smaller than industrial-
scale, usually emphasizing the low-resource case in which very little
supervised data is available. Furthermore, they use large full-context
architectures that do not meet realistic requirements for modern pro-
duction ASR systems such as being small enough to fit on a mobile
phone and capable of streaming predictions. Finally, the literature
reports almost entirely on WER improvements, with little study of
measures like CPU load and lattice richness that are applicable when
an ASR system acts as an individual component of an on-device sys-
tem.

In this work, we provide a comparison of several leading semi-
supervised methods in a controlled setting geared towards produc-

tion implementation. Unlike previous work, we apply these meth-
ods to a state-of-the-art, 160M-parameter streaming Conformer [7]
model that is already trained on a very large supervised corpus. We
further depart from previous work by training supervised and un-
supervised tasks jointly, which is being increasingly shown to be
preferable to the conventional fine-tuning approach on very large
datasets [8]. We find that under these conditions, none of the stud-
ied methods improve general WER at all. However, we report im-
provements in the decoder’s computational load and in lattice den-
sity, as well as in several targeted WER measurements assessing per-
formance on known categories of particularly difficult utterances.
Through this comparison and analysis, we hope to offer a more nu-
anced and comprehensive view of the usefulness of unpaired audio
and text in industrial ASR.

The rest of our paper is structured as follows. Section 2 sum-
marizes the literature on the three methods under study. Section 3
presents our architecture for a streaming ASR system that supports
these three methods and their combinations. Section 4 details our
datasets, experiments and evaluation criteria. Section 5 presents our
results, and Section 6 concludes.

2. RELATED WORK

In this section, we summarize the literature surrounding the three
semi-supervised learning methods that we study in this work.

2.1. Text Injection

Unsupervised text injection in ASR is traditionally done with lan-
guage model “fusion”, either at inference time [9] or training time
[10, 11]. These methods involve the explicit separation of the model
parameters into an acoustic model trained on paired data and a lan-
guage model trained on unpaired text. The improvements yielded
by these methods come at the cost of the additional language model
parameters at inference time.

A simultaneous line of work has sought an alternative to fusion
in which unsupervised text is used to train an acoustic model di-
rectly. One major line of work focuses on creating pseudolabels for
unpaired text through synthesized audio. This has been studied by
generating a raw audio signal [12] or higher level lexical features
[13]. Work adapting cycle consistency losses from machine trans-
lation have trained ASR and TTS together with a fully end-to-end
objective [14, 15]. We choose TTS-based augmentation as the first
method to study in this work (see Section 3.2.1).

Finally, a third class of methods for unpaired text injection
makes use of auxiliary, text only objectives to train an ASR encoder
without generating TTS pseduolabels. Most such works have sought
to train an ASR encoder to agnostically represent either audio or text,
such that unpaired text is processed similarly to audio [16, 17, 18].
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Fig. 1. High-level model architecture.

JOIST [19] is a recent method which does this using a masked lan-
guage modeling task in the spirit of BERT [20]. We study JOIST
in this work since it is one of the few methods that has been shown
to work well together with very large supervised datasets and with
on-device sized streaming models (see Section 3.2.2).

2.2. Audio Injection

Unsupervised audio injection is very well studied and has yielded
a large literature [21]. Recent work has largely built of the success
of the Wav2Vec series of models [22, 23], which work by model-
ing masked segments of audio using a contrastive loss. One line
of further work investigated audio clustering to generate targets for
the contrastive loss [24, 25] while another investigated methods for
computing that signal by quantizing the audio inputs [26]. BEST-
RQ [27] in particular finds that fixed random projection to a pre-
initialized codebook works effectively as a quantizer. We choose
BEST-RQ as the third method to study in this work (see Section
3.2.3).

3. METHODS

In this section, we frame the problem of semi-supervised speech
recognition, develop our model architecture, and specify the multi-
task optimization problem that it is trained for.

3.1. Architecture

We are interested in the setting in which unsupervised data in both
the speech and text domains is available alongside a large supervised
corpus. We denote as (x, y) ∈ S the supervised pair of a speech
utterance x and text label y in the supervised dataset S. We similarly
denote unsupervised speech examples as x ∈ US and unsupervised
text examples y ∈ UT .

We extend the cascading conformer proposed in [28] to support
semi-supervised multitask training. To this end, we define four neu-
ral modules:

1. EC , the “causal” encoder, which consumes streamed audio
features with no right-context.

2. ENC , the “non-causal” encoder, which consumes the outputs
of EC with 900ms of right-context.

3. DC , a decoder for the causal encoder. During inference, this
decoder may be used to generate immediate predictions as the
user speaks.

4. DNC , a decoder for the non-causal encoder. During infer-
ence, this decoder may be used to revise the predictions of
the causal decoder with short latency.

Unlike [28], we would like our model to consume representa-
tions of either audio or text. For this we follow JOIST, seeking
mechanisms to cause the EC to be agnostic to the input domain.
We choose to include two neural “frontends”, one for audio features
and one for text. As in JOIST, we upsample text frontend outputs by
repetition so that audio and text representations will be of approxi-
mately the same length.

3.2. Tasks

In this framework, causal and non-causal ASR are trained as they
are in [28]. In particular, for causal ASR, x is processed by the
audio frontend, encoded by EC , and decoded by DC , while non-
causal ASR is processed analogously with the non-causal modules
ENC and DNC . The model is trained end-to-end with an RNN-T [2]
loss. This is represented by the solid blue (causal) and solid green
(non-causal) paths in Figure 1. For semi-supervised tasks we require
different formulations.

3.2.1. TTS Augmentation

Using a pre-trained TTS system with frozen parameters, we generate
an audio clip x̂ corresponding to each unsupervised text segment
y ∈ UT . We then treat (x̂, y) as a supervised audio-text pair and
train the causal and non-causal ASR tasks. This is represented by
the dotted blue (causal) and dotted green (causal) paths in Figure 1.



We found that in order to achieve reasonable training speed it
is important that the TTS system convert input word-pieces not into
raw audio but instead into the (much shorter) sequence of acoustic
features that is consumed by the audio frontend. This is due to the
fact that since the decoder of our TTS system which produces audio
features is autoregressive, audio sequence length has critical impli-
cations for training speed and quickly becomes a bottleneck.

3.2.2. JOIST

Following the design of JOIST in [19], we pass masked unpaired
text examples through a text frontend, which consists simply of a
learned projection. The results are treated identically to audio fea-
tures; that is, they are passed in turn to the causal (EC and DC ) and
non-causal (ENC and DNC ) and compared to original text sequence
via an RNN-T loss. This is represented by the dashed blue (causal)
and dashed green (causal) paths in Figure 1.

We find that it is critical for WER that JOIST consume phonemic
representations of y, as opposed to text tokens, corroborating the
findings of [19]. We include a text-to-phonemes lookup in the model
which processes text before masking. The JOIST loss still operates
with respect to the standard word-piece representation - that is, the
JOIST loss learns to generate word pieces from a masked phoneme
sequence.

3.2.3. BEST-RQ

We model our audio injection after BEST-RQ as implemented in
[27]. Audio features are masked and processed by the frontend.
They are then encoded by the casual and non-causal encoders of
the ASR stack. Additionally, audio features are processed by a ran-
domly initialized projection with frozen weights and then discretized
by rounding to the nearest entry in a fixed codebook. The encoder
is then trained to predict the quantized targets inside the masked re-
gion. This is represented by the dashed red path in Figure 1.

3.3. Training Scheme

There are many approaches to multi-task semi-supervised learn-
ing, mostly focused on pretrain-finetune paradigm [22, 23, 26, 25].
While this methodology has achieved state of the art results on
datasets such as Librispeech, we found that on our large dataset it
is prone to forgetting representations learned in pretraining during
finetuning, which is consistent with the findings in [8] for very large
training sets. We therefore restrict our study to joint training of
ASR together with the unsupervised tasks. Note that even though
joint training includes ASR, we find that it is still beneficial and
convenient to initialize from a strong ASR baseline.

At each iteration during training we sample a separate batch
from each dataset, bS ∈ S, bUS ∈ US , and bUT ∈ UT . We
then propagate each batch through the model, performing the pre-
processing specified for TTS augmentation and JOIST on bUT and
that specified for BEST-RQ on bUS . We apply the relevant losses to
each task and sum them according to specified weights.

4. EXPERIMENTS

This section details the implementation, training, and evaluation of
the architecture described above.

4.1. Model

Following the components in Figure 1 the architecture of our model
is as follows.

The causal audio encoder EC consists of six conformer [7] lay-
ers with model dimension 2048 and eight attention heads. The non-
causal audio encoder ENC adds a further nine such conformer lay-
ers. The decoders DC and DNC are each HAT [11] decoders with
prediction and joint networks with model dimension 640. These
four components and the audio frontend, which together make up
the inference-time model, contain about 164M parameters.

The TTS system is based on Tacotron 2 [29]. The encoder con-
sists of three convolutions followed by a single RNN layer, while
the decoder consists of a single RNN layer with attention to the en-
coder outputs followed by a post-net consisting of five convolutional
layers.

4.2. Training

We train our model with a supervised dataset S consisting of about
4M utterances, totalling about 200k hours of speech. We also use an
unsupervised audio set US of about 600M utterances and an unsu-
pervised text set UT of about 230B examples.

At timestep t, the audio head of our model consumes 512-
dimensional features consisting of four 128-dimensional log-mel
features representing the range [t − 2, t + 1]. The log-mel features
are computed at 10ms intervals and on 32ms frames. We subsample
stacked features by a factor of 3, so that each feature represents
30ms in the input. During BEST-RQ, we a mask single span con-
sisting of 15% of the input features. Text inputs are represented by a
wordpiece model of size 4096.

Our baseline model is trained for 800k steps with a batch size
of 2048 for each of S, US , and UT . Our semi-supervised experi-
ments are trained for a further 35k steps, using task splits detailed in
Section 5.

4.3. Evaluation

We evaluate our models on several test sets, seeking to measure per-
formance under the acoustic and language conditions which are typ-
ically targeted using unsupervised data. Our voice search test set
(VS) is sampled from anonymized traffic to Google production ser-
vices. The NOISY set consists of anonymized traffic with artificial
noise added. Our remaining test sets are synthesized using a TTS
system from anonymized text traffic to Google services, and are se-
lected according to a criterion meant to target difficult language con-
ditions. The rare proper nouns set (RPN) consists of examples that
contain a proper noun (as determined by a neural proper noun tagger)
that occurs fewer than five times in S. The Rare-LM set (R LM)
consists of examples containing a unigram that occurs fewer than
five times in both S and UT , while the (C LM) consists of exam-
ples containing a unigram that occurs fewer than five times in S but
at least 150 times in UT . RPN and C LM are measure tail per-
formance, while C LM is intended to measure the degree to which
information from UT has been incorporated into the model.

5. RESULTS

We denote JOIST with the letter A, TTS augmentation with B, and
BEST-RQ with C. We find the best results when each of these ex-
periments are trained with 40% task weighting each on causual and
non-causal ASR, with the remaining 20% split across unsupervised



Model VS Noisy RPN R LM C LM

E-0 162 187 297 357 325
E-A -7.2% -5.3% -11.1% -10.1% -8.9%
E-B -7.2% -5.3% -9.8% -8.4% -7.4%
E-C -9.9% -6.9% -6.3% -5.8% -4.9%

E-AB -7.2% -4.8% -6.1% -5.0% -4.0%
E-AC -9.9% -6.4% -10.8% -9.2% -8.3%

E-ABC -8.5% -5.9% -9.8% -8.7% -7.7%

Table 1. Average Decoding States

Model VS Noisy RPN R LM C LM

E-0 3.2 3.3 6.2 8.1 9.7
E-A +12.5% +15.2% +3.2% +3.7% +3.1%
E-B +12.5% +12.1% +3.2% +3.7% +3.1%
E-C +12.5% +12.1% +3.2% +3.7% +3.1%

E-AB +12.5% +12.1% +1.6% +3.7% +3.1%
E-AC +12.5% +12.1% +3.2% +4.9% +4.1%

E-ABC +12.5% +12.1% +3.2% +4.9% +3.1%

Table 2. Lattice Density

tasks. The weightings of the unsupervised tasks are given in Table
3.

Model C-JOIST NC-JOIST TTS BEST-RQ

E-A 1/2 1/2 0 0
E-B 0 0 1 0
E-C 0 0 0 1

E-AB 1/4 1/4 1/2 0
E-AC 1/4 1/4 0 1/2

E-ABC 1/6 1/6 1/3 1/3

Table 3. Task Weights. C-JOIST and NC-JOIST refer to the causal
and non-causal variants.

We denote our baseline experiment E-0, which splits its weight
equally between causal and non-causal supervised ASR.

We give our WER results in Table 4. We are unsurprised to
find that given a very large supervised corpus and limited model
capacity, none of our methods improve performance on the unspe-
cialized voice search test set. We find considerable improvement,
however, under tail conditions. JOIST consistently performs best on
the acoustically clean but linguistically difficult TTS tail-word test
sets, which agrees with the intuition that JOIST acts to improve the
encoder’s text representation. However, JOIST in fact degrades per-
formance on the acoustically challenging Noisy test set. BEST-RQ
seems beneficial only when combined with JOIST, where it appears
to recover lost performance on noisy data while retain some of the
improvements on the tail-word sets.

Model VS Noisy RPN R LM C LM

E-0 6.0 8.2 21.2 38.3 55.8
E-A -0.0% +1.2% -4.7% -5.0% -2.3%
E-B -0.0% -1.2% -0.5% -2.1% -0.7%
E-C -0.0% +1.2% +0.1% -0.0% -0.4%

E-AB -0.0% +1.2% -3.8% -4.2% -2.0%
E-AC -0.0% -0.0% -2.8% -2.9% -1.2%

E-ABC -0.0% +2.4% -3.3% -3.7% -1.4%

Table 4. Word Error Rate

In production systems, model performance goes beyond raw
WER, since it is often not a 1-best hypothesis but rather the pro-
duced lattice that is used to generate predictions or fed directly to a
downstream NLU task. In Table 2, we measure the richness of the
lattice by computing “lattice density”, which we define as the num-
ber of arcs in the lattice divided by the number of wordpieces in the
ground truth. On this measure, we find that all three methods offer
considerable improvement in voice search. For difficult utterances,
we find that combinations of methods largely outperform single

methods. This agrees with the intuition that many training criteria
lead to a greater diversity of plausible predictions, and invites inves-
tigation into the combination of these methods for applications like
biasing or intent classification which can benefit from a rich lattice.

Finally, since an autoregressive decoder is often a computational
bottleneck in on-device systems, we seek to determine the impact of
our methods on the work the decoder has to do. In Table 1, we mea-
sure the average number of states expanded by the decoder during
beam search. We find that all three methods provide meaningful im-
provements over the baseline on this metric, with the best results
coming from JOIST. This suggests, unsurprisingly, that the decoder
explores the fewest states when the encoder has a strong language
representation.

6. CONCLUSIONS

In this work we apply several contemporary semi-supervised training
methods to a realistic, state-of-the-art production ASR system. We
find that unlike in the conventional setting, with a large full-context
model and only a small amount of supervised data, these methods
do not offer improvement on unspecialized WER. We demonstrate,
however, that these techniques nevertheless offer meaningful utility
for tail-condition performance, lattice density, and decoder compu-
tational load. We believe that these results motivate a broader per-
spective on semi-supervised training in its application to industrial
ASR.

7. REFERENCES

[1] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kings-
bury, “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[2] Alex Graves, “Sequence transduction with recurrent neural
networks,” in International Conference on Machine Learning
(ICML), 2012.

[3] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals,
“Listen, attend and spell: A neural network for large vocabu-
lary conversational speech recognition,” in 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016, pp. 4960–4964.

[4] Jing Pan, Joshua Shapiro, Jeremy Wohlwend, Kyu Han, Tao
Lei, and Tao Ma, “Asapp-asr: Multistream cnn and self-
attentive sru for sota speech recognition,” 10 2020, pp. 16–20.



[5] Samuel Thomas, Michael L. Seltzer, Kenneth Church, and
Hynek Hermansky, “Deep neural network features and semi-
supervised training for low resource speech recognition,” in
2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, 2013, pp. 6704–6708.

[6] Jennifer Drexler, Deep unsupervised learning from speech,
Ph.D. thesis, 01 2016.

[7] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par-
mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zheng-
dong Zhang, Yonghui Wu, and Ruoming Pang, “Conformer:
Convolution-augmented transformer for speech recognition,”
in INTERSPEECH, 2020.

[8] Junwen Bai, Bo Li, Yu Zhang, Ankur Bapna, Nikhil Sid-
dhartha, Khe Chai Sim, and Tara N. Sainath, “Joint unsuper-
vised and supervised training for multilingual ASR,” in In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2021.
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