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ABSTRACT

Cross-speaker style transfer in speech synthesis aims at
transferring a style from source speaker to synthesized speech
of a target speaker’s timbre. In most previous methods, the
synthesized fine-grained prosody features often represent the
source speaker’s average style, similar to the one-to-many
problem(i.e., multiple prosody variations correspond to the
same text). In response to this problem, a strength-controlled
semi-supervised style extractor is proposed to disentangle the
style from content and timbre, improving the representation
and interpretability of the global style embedding, which can
alleviate the one-to-many mapping and data imbalance prob-
lems in prosody prediction. A hierarchical prosody predictor
is proposed to improve prosody modeling. We find that better
style transfer can be achieved by using the source speaker’s
prosody features that are easily predicted. Additionally, a
speaker-transfer-wise cycle consistency loss is proposed to
assist the model in learning unseen style-timbre combinations
during the training phase. Experimental results show that the
method outperforms the baseline. We provide a website with
audio samples ',

Index Terms— style transfer, semi-supervised, expres-
sive and controllable speech synthesis, hierarchical prosody

1. INTRODUCTION

With the development of deep learning, speech synthesis
technology has rapidly advanced|[L, [2, 3]. Improving the ex-
pressiveness and controllability of TTS systems for a better
listening experience has attracted more attention and re-
search. So far, cross-speaker style transfer TTS is divided
into two categories: global style transfer [4, 15} 6} [7, |8, 9] and
fine-grained prosody transfer [10} (11} [12}[13].

Many global style transfer methods using style-id as a
global style variable have been proposed[4} 5, [6]. There are
correlations between style-ids such as happy and surprised,
and the distribution of emotions in complicated datasets is
complex and varied. There is a one-to-many problem with
using style-id to describe emotions since it is impossible to
guarantee that data with the same style ID consistency in the
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 Audio samples: https://giangchunyu.github.io/style-transfer/STW.html

intensity of emotion, such as generally sad, very sad, and
extremely sad. Reference encoder methods based on global
style tokens(GST)[7]] or variational autoencoders (VAESs)[8,
9,114} 15] are widely used to learn the latent representation of
style state in a continuous space. VAE is used to model the
variance information in the latent space with Gaussian prior
as a regularization. The so-called “’speaker leakage problem”
arises when synthetic speech appears to have been uttered by
the source speaker rather than the target speaker due to the
fact that the style being transferred came from speech uttered
by the source speaker. Many methods use intercross training,
gradient reversal, domain adversarial training or add multi-
ple loss functions[10, |16} [17, [18} 19} 20] to reduce the source
speaker leakage. The speaking styles are characterized by lo-
calized prosody variations, many fine-grained prosody trans-
fer methods using both global style variable and local prosody
variable have been proposed[10} [11} 12} 13]]. Most of the pre-
vious methods use the source style-id, text and target speaker-
id to predict style prosody features. The synthesized fine-
grained prosody features often represent the average style of
source speaker. In practice, the multi-style data of the source
speaker is sparse, and the data of target speaker only contains
single-style data without labels. This makes it difficult to pre-
dict the target speaker’s prosody features (style of the source
speaker). Meanwhile, the phone-level prosody features are
distorted, making predictions inaccurate. The contributions
of this paper include:

* A strength-controlled semi-supervised style extractor is
proposed to disentangle the style from content and tim-
bre, improving the representation and interpretability
of the global style embedding, which can alleviate the
one-to-many mapping and data imbalance problems in
prosody prediction.

* A hierarchical prosody features predictor is proposed
to improve prosody modeling. The phone level prosody
features are distorted (lack of information relative to the
frame level features) leading to prediction difficulties.
However, we expect that local style variables only con-
tribute only to the information at the phone-level while
more personalities within the phone are learned through
target speaker-id and global style embedding. We find
that better style transfer can be achieved by using the


https://qiangchunyu.github.io/style-transfer/STW.html

@ Add Hirerachical Prosody Predictor

<> Concatenate Phone-level MSE Loss Frame-level MSE Loss

* Multiply ] i ;
Phone-level Phone-level Pitch p— Framelevel | Frame-level Pitch I - Phone-level Pitch I

[ ] [Bhone Eberding TEr Regulator R : | sampiing i
Predictor LESEEEE predictor i : Phone-eve Energy ] |

»  Phone-level Duration

Style Strength Control ~
(Inference Phase) 3¢ (scale

i Target Mel !
Reference Global Style ~ J o i | Reference
Encoder Embedding o | I Encoder

:
e Porameteri ) e
<=

Style-Loss-Mask

Speaker
Classifier
GRL

Target Style
Embedding

[ cycle Consistency Loss |

Random Style
Embedding

Random Mel I

Embedding.

= or

Cycle Consistency Loss

e |

Speaker-Transfer-wise Cycle Consistency Loss

Fig. 1. The architecture of proposed model.

source speaker’s prosody features that are easily pre-
dicted.

* A speaker-transfer-wise cycle consistency loss is pro-
posed to assist the model in learning unseen style-
timbre combinations during the training phase in order
to address the instability and speaker leakage problem
produced by the source speech and predicted source
prosody features.

2. METHOD

The proposed framework is illustrated in Fig.1. As shown,
the proposed model is an attention-based seq2seq framework,
hierarchical prosody features predictor take a text sequence,
a source speaker-id and a global style embedding as input
to predict source speaker’s phone-level prosody features.
Tacotron-like systems take a text sequence, a target speaker-
id, a global style embedding and predicted source prosody
features as input, and use autogressive decoder to predict a
sequence of acoustic features frame by frame.

2.1. Semi-Supervised Style Extractor
2.1.1. Reference encoder

As illustrated in Fig.1, in order to alleviate the highly en-
tangled problem in cross-speaker style transfer and improve
the style extraction ability of the model, a style bottleneck
sub-network[/11] is introduced to the reference encoder. The
style bottleneck network consists of 6 layers 2D convolu-
tional networks and a (Squeeze-and-Excitation based ResNet
architecture) SE-ResNet block [21]. The SE-ResNet block
can adaptively recalibrate channel-wise feature responses by
explicitly modelling interdependencies among channels, and
produce significant performance improvements. The model

obtains a continuous and complete latent space distribution
of styles through the VAE [22] structure to improve the style
control ability. A 64-dimensional vector is sampled from
Gaussian distribution as global style embedding. Random
operations in the network cannot be processed by backprop-
agation, “reparameterization trick” is introduced to VAE:
z=[+6®¢;¢~ N(0,I). Three tricks are used to solve
KL collapse problem: 1) The KL annealing is introduced.
2) A staged optimization method is adopted to optimize the
reconstruction loss first and then the KL loss. 3) A margin
A is introduced to limit the minimum value of the kl loss
as shown:Ly, = maz(0, D[N (i, 6%)||N(0,1)] — A).
Furthermore, the style strength of synthesized speech can be
effectively controlled by scaling global style embedding.

2.1.2. Style Loss Mask

The speaker timbre and style in speech signals are highly
entangled, and reducing the source speaker leakage plays
an important role in the task of cross-speaker style transfer.
The model uses a gradient reversal layer(GRL) for adversar-
ial speaker training. The extracted global style embedding
is fed into the speaker classifier, which consists of a fully
connected layer, a softmax layer and a GRL. To improve
the representation and interpretability of the global style em-
bedding, we add a style classifier that is consistent with the
speaker classifier structure. Since the majority of the target
speaker data lacks style labels and labeled multi-style data is
sparse, categorizing unlabeled data as neutral will affect the
style classifier’s accuracy and decrease the global style em-
bedding’s capacity for representation. For semi-supervised
training, we mask the style classification loss of such target
speakers in each batch to zero, and the reference encoder will
subtly identify the styles in each speech contains.
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Fig. 2. Prosody features predicted by scaling global style embedding(The abscissa represents the phoneme length).

2.2. Hierarchical Prosody Predictor

The phone level prosody features are distorted (lack of in-
formation relative to the frame level features) leading to
prediction difficulties. However, we expect that local style
variables only contribute only to the information at the phone-
level while more personalities within the phone are learned
through target speaker-id and global style embedding. As
shown in the Fig.1, a hierarchical prosody features predictor
is proposed to improve the accuracy of phone-level features
prediction. In order to reduce the speaker information of
the prosody features and improve the stability, the extracted
prosody features are standardized by the mean variance at
the speaker level. We find that better style transfer can be
achieved by using the source speaker’s prosody features
that are easily predicted. The phone embedding, source
speaker embedding and global style embedding are fed into
the phone-level prosody predictor to obtain the pitch, energy
and duration of phone-level. Phone-level pitch and energy
features are concatenated with phone embedding, expanded
using a length regulator, and used as input to frame-level
prosody predictor. The predicted frame-level pitch and en-
ergy features are downsampled by calculating the mean of
each phoneme to obtain the final phone-level prosody feature.
Both the phone-level and frame-level prosody feature predic-
tors consist of 2 layers 1D convolutional networks and one
layer fully connected network. To ensure that the length of
the frame-level prosody features is consistent with the ground
truth to calculate the frame-level mean square error (MSE)
loss, the duration of ground truth is used for expansion in the
training phase.

2.3. Speaker-Transfer-wise Cycle Consistency Loss

In the training phase, the combination of target speaker em-
bedding and source style embedding as input is an out-of-
set problem, since there is no ground truth to calculate the
reconstruction loss. Most of the existing methods use the
ground truth acoustic features and the synthesized acoustic
features constitute paired two-tuples to compute cycle consis-
tency loss. Due to teacher-forcing, these two features are al-
most the same, making this method less effective. As shown

in the Fig.1, a speaker-transfer-wise cycle consistency loss
is proposed. The randomly chosen speaker-id and the target
speaker-id are used as input to calculate the forward twice in
each training step, and the rest of the input information is en-
tirely consistent. We expect that the target mel-spectrogram
and random mel-spectrogram will have different timbres and
the same style. Two cycle consistency losses are constructed:
(random style embedding & target style embedding), (random
style embedding & global style embedding). The method as-
sist the model in learning unseen style-timbre combinations
during the training phase in order to address the instability
and speaker leakage problem produced by the source speech
and predicted source prosody features.

3. EXPERIMENTS

3.1. Experimental Step

A dataset is used with 20 native Mandarin speakers (10 males
and 10 females), two of which contained multi-styles (com-
fort, happy, sad, surprised, natural), while the others con-
tained only single style (similar to natural) without style la-
bels. Each labeled multi-style speaker has 300 sentences per
style. Each unlabeled single-style speaker has 10,000 sen-
tences. The dataset has an average per-speaker duration of
2.9 seconds, and all speech waveforms sampled at 24kHz are
converted to mel-spectrogram with a frame size of 960 and
hop size of 240. In the inference phase, the centroid of the
global style embeddings extracted from all sentences for each
style is used. The front-end model structure is consistent with
[23]]. The vocoder used in this experiment is LPCNet [24].

3.2. Compared Models

To our best knowledge, Disentangling[6]] and Bottleneck[11]]
are two state-of-the-art strategies that are used in the speech
style transfer task. Here, to show the superiority of our
proposed method, these two strategies are also adopted to
compare with our method. To be fair, we changed all models
to make use of the same attention-based seq2seq framework.
The phone-level prosody predictor structure of proposed
model and Bottleneck is the same. An ablation study is



Table 1. Prosody Measurement
Model FO Energy Duration
Bottleneck[11] 0.59 0.88 0.87
Proposed 0.70 0.92 0.86

Table 2. Strength Perception Accuracy

Model Comfort Happy Sad Surprised
Disentangling[6] 39.1 53.64 50.00 56.36
Proposed 66.36 70.00 7273 73.63

performed by comparing the proposed method with several
variants achieved by removing style loss mask (SLLM) method
(described in Sec 2.1.2.) or speaker-transfer-wise (STW) cy-
cle consistency loss(described in Sec 2.3.).

3.3. Test Metrics

All the subjective tests are conducted by 11 native judgers,
and each metrics consisted of 20 sentences per style. The test
metrics used in the evaluation are listed below:

* Prosody Measurement: Phone-level prosody correla-
tion to source style recording, include pitch(F0), Dura-
tion and Energy.

* Strength Perception: A subjective strength perception
test. The judger is asked to sort them according to the
style strength (weak, medium, and strong).

» Style and Speaker Similarity MOS: To verify simi-
larity in expected speaking style and timbre between
source speech and synthesized speech.

* Style Perception: A subjective style perception test.
The judger is asked to select one from 5 options
(comfort, happy, sad, surprised, neutral), according
to his/her perception on the test case.

3.4. Results

The prosody measurements in Table 1 (Disentangling does
not support fine-grained prosody prediction) show that the
proposed hierarchical prosody predictor is significantly better
than single-level model Bottleneck. The frame-level loss
provides more detailed undistorted supervision, and the pre-
diction results in the pitch and energy are closer to the ground
truth. As shown in Table 2 (Bottleneck does not support
strength control), the proposed method achieves better style
strength control due to fine-grained prosody features. Unlike
[6], which does not care about the ordering direction, only
samples arranged in a weak(scale=0.5)-medium(scale=1)-
strong(scale=2) order are treated as correct. As shown in
Fig.2, the synthesized phone-level prosody features of each

Table 3. MOS
Model Style Sim Speaker Sim
Disentangling 357+£0.091 3.89+0.082
Bottleneck 3.81+£0.080 4.01+0.072
Proposed(w/o SLM) 3.23£0.044 3.94+0.016
Proposed(w/o STW) 3.92+0.042 3.98+0.033
Proposed 3.99 £0.082 4.02 £0.077

Table 4. Style Perception Accuracy

Model Comfort Happy Sad Surprised
Disentangling 47.27 4545 5455 4545
Bottleneck 65.45 57.27 7818 54.55
Proposed(w/o SLM) 43.64 3454 43.64 32.73
Proposed(w/o STW)  70.91 56.36  76.36 56.36
Proposed 72.73 5455 78.18 56.36

synthesis are plotted based on different style embedding
scales. As can be seen, in each subfigure, the features trajec-
tories of different strengths present a similar trend but with
different values. For instance, the pitch reduces and the dura-
tion increases as the scale increases from 0.5 to 2 for comfort
and sad. As for happy and surprised, the pitch increases and
the duration reduces as the scale increases, and the result was
as expectd. The significant effect of our proposed method on
adjusting the style strength is demonstrated.

As shown in Table 3, in terms of speaker similarity MOS,
both methods have achieved acceptable results. The proposed
method achieves similar scores to Bottleneck. In terms of
style similarity MOS, compare with Proposed(w/o SLM),
SLM method gives the model more explicit style informa-
tion, the proposed method achieves a best style similarity. The
subjective test for style evaluation are shown in Table 4, the
proposed method achieves the best performance, where the
style loss mask method is effective for the style representa-
tion ability. Compared with Proposed(w/o STW), the im-
provement of STW method is weak. During the experiment,
we find that the initial value of the cycle consistency loss is
very low, indicating that the global style embedding already
has a good style representation ability, and does not contain
the source speaker’s timbre information. The STW method
may be more efficient when using the traditional reference
encoder structure. We will verify this hypothesis in future.

4. CONCLUSIONS

In this paper, we focus on the prosody prediction in the
cross-speaker style transfer task. A strength-controlled semi-
supervised style extractor, a hierarchical prosody features
predictor, and a speaker-transfer-wise cycle consistency loss
are proposed. We achieve good style transfer by using the
source speaker’s prosody features. Experiments show that the
effectiveness of our proposed methods.
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