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ABSTRACT
Computational complexity and overthinking problems

have become the bottlenecks for pre-training language mod-
els (PLMs) with millions or even trillions of parameters. A
Flexible-Patience-Based Early Exiting method (F-PABEE)
has been proposed to alleviate the problems mentioned above
for single-label classification (SLC) and multi-label classi-
fication (MLC) tasks. F-PABEE makes predictions at the
classifier and will exit early if predicted distributions of
cross-layer are consecutively similar. It is more flexible than
the previous state-of-the-art (SOTA) early exiting method
PABEE because it can simultaneously adjust the similar-
ity score thresholds and the patience parameters. Extensive
experiments show that: (1) F-PABEE makes a better speedup-
accuracy balance than existing early exiting strategies on both
SLC and MLC tasks. (2) F-PABEE achieves faster inference
and better performances on different PLMs such as BERT and
ALBERT. (3) F-PABEE-JSKD performs best for F-PABEE
with different similarity measures.

Index Terms— F-PABEE, PABEE, Early Exiting, Multi-
label Classification, Single-label Classification

1. INTRODUCTION

Fine-tuning PLMs has become the de-facto paradigm in natu-
ral language processing [1], due to the amazing performance
gains on a wide range of natural language processing tasks
[2, 3, 4, 5, 6]. Despite SOTA performances, BERT [7] and its
variants [8, 9, 10, 11] still face significant application chal-
lenges: cumbersome computation and overthinking problems
due to huge parameters and deep models. Early exiting at-
tracts much attention as an input-adaptive method to speed up
inference [12]. Early exiting installs a classifier at each trans-
former layer to evaluate the predictions and will exit when
meeting the criterion. Three different early exiting strategies
exist: (1) The confidence-based strategy evaluates the pre-
dictions based on specific confidence measurements. (2) The
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learned-based strategy learns a criterion for early exiting. (3)
The patience-based strategy exits when consecutive classifiers
make the exact predictions. Among them, the patience-based
strategy PABEE [13] achieves SOTA results.

We raise two issues for the current SOTA strategy: (1)
PABEE faces a limitation for application: it can not flexibly
adjust the speedup ratio on a given task and fixed patience
parameter, mainly caused by a strict cross-layer comparison
strategy. Thus, we wonder whether we can combine PABEE
with a softer cross-layer comparison strategy. (2) Current
early exiting strategies mainly focus on SLC tasks, while the
MLC tasks are neglected. So can they speed up MLC tasks?

Therefore, we propose a Flexible-Patience-Based Early
Exiting method (F-PABEE) to address the above issues. F-
PABEE makes predictions at each classifier and will exit early
if the current layer and the last few layers have similar (sim-
ilarity score less than a threshold) predicted distributions. F-
PABEE can be seen as a natural extension of PABEE and is
more flexible since it can achieve better speed-accuracy trade-
offs by adjusting the similarity score thresholds and patience
parameters. It can also extend to MLC tasks effortlessly.

Our contributions are summarized as follows: (1) We pro-
pose F-PABEE, a novel and effective inference mechanism
that is flexible in adjusting the speedup ratios of PLMs. (2)
The results show that our method can accelerate inference ef-
fectively while maintaining good performances across differ-
ent SLC and MLC tasks. (3) We are the first to investigate the
early exiting of MLC tasks, and F-PABEE is suitable for this
type of task.

2. RELATED WORKS

2.1. Static inference approach

The static inference approach compresses the heavy model
into a smaller one, including pruning, knowledge distillation,
quantization, and weight sharing [14, 15, 16]. For example,
HeadPrune [17] ranks the attention heads and prunes them
to reduce inference latency. PKD [18] investigates the best
practices of distilling knowledge from BERT into smaller-
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Fig. 1. Inference procedure of PABEE and F-PABEE, Ci is the classifier, thre is threshold, P0 is pre-defined patience.

sized models. I-BERT [19] performs an end-to-end BERT
inference without any floating point calculation. ALBERT [8]
shares the cross-layer parameters. [20], [21] and [22] distills
knowledge from the larger BERT teacher model for improv-
ing the performances of student networks which are learned
with neural architecture search. Note that the static models
are still in the form of deep neural networks with multiple
stacked layers. The computational path is invariable for all
examples in the inference process, which is not flexible.

2.2. Dynamic early exiting

Orthogonal to the static inference approach, early exiting dy-
namically adjusts hyper-parameters in response to changes in
request traffic. It does not need to make significant changes to
the original model structure or weight bits, nor does it need to
train different teacher-student learning networks, which saves
computing resources [23].

There are mainly three groups of dynamic early exiting
strategies. The first type is confidence-based early exit-
ing [24]. For example, BranchyNet [25], FastBERT [26], and
DeeBERT [27] calculate the entropy of the prediction proba-
bility distribution to estimate the confidence of classifiers to
enable dynamic early exiting. Shallow-deep [28] and Right-
Tool [29] leverage the maximum of the predicted distribution
as the exiting signal. The second type is the learned-based
exiting, such as BERxiT [30] and CAT [31]. They learn a
criterion for early exiting. The third type is patience-based
early exiting, such as PABEE [13], which stops inference and
exits early if the classifiers’ predictions remain unchanged
for pre-defined times. Among them, patience-based PABEE
achieves SOTA performance. However, PABEE suffers from
too strict cross-layer comparison, and the applications on
MLC tasks are neglected. There are also literature focusing
on improving the training of multi-exit BERT, like LeeBERT
[32] and GAML-BERT [33].

F-PABEE is a more flexible extension to PABEE, which
can simultaneously adjust the confidence thresholds and pa-
tience parameters to meet different requirements. In addition,
it outperforms other existing early exiting strategies on both
SLC and MLC tasks.

2.3. Training of multi-exit backbones

The literature on early exiting focuses more on the design of
early exiting strategies, thus neglect the advances of multi-
exit backbones’ training methods. LeeBERT [32] employs an
adaptive learning method for training multiple exits. GAML-
BERT [33] enhances the training of multi-exit backbones by
a mutual learning approach.

3. FLEXIBLE PATIENCE-BASED EARLY EXITING

3.1. Inference procedure for SLC and MLC tasks

The inference procedure of F-PABEE is shown in Fig 1(b),
which is an improved version of PABEE (Fig 1(a)), where
Li is the transformer block of the model, n is the number
of transformer layers, Ci is the inserted classifier layer, s is
the cross-layer similarity score, thre is the similarity score
threshold, P0 is the pre-defined patience value in the model.

The input sentences are first embedded as the vector:

h0 = Embedding(x). (1)

The vector is then passed through transformer layers (L1...Ln)
to extract features and compute its hidden state h. After
which, we use internal classifiers (C1...Cn), which are con-
nected to each transformer layer to predict probability p:

pi = Ci(hi) = Ci(Li(hi−1)). (2)

We denote the similarity score between the prediction re-
sults of layer i − 1 and i as s(pi−1, pi) (s(pi−1, pi) ∈ R).



CoLA MNLI MRPC QNLI QQP RTE SST-2
score speedup score speedup score speedup score speedup score speedup score speedup score speedup

BERT base 54.2 0% 83.1 0% 86.8 0% 89.8 0% 89.2 0% 69.1 0% 91.3 0%
Fixed-Exit-3L 0.0 75% 70.0 75% 75.8 75% 77.4 75% 81.8 75% 54.7 75% 81.0 75%
Fixed-Exit-6L 0.0 50% 79.6 50% 84.7 50% 85.3 50% 89.3 50% 68.1 50% 88.6 50%

BranchyNet 0.0 74% 63.8 76% 75.7 76% 74.2 80% 71.6 80% 54.7 76% 79.9 76%
0.0 51% 78.3 53% 83.0 52% 87.1 47% 89.3 50% 67.4 47% 88.3 49%

Shallow-Deep 0.0 75% 64.1 77% 75.6 76% 74.3 78% 71.4 79% 54.7 76% 79.5 77%
0.0 52% 78.2 51% 82.8 51% 87.2 49% 89.6 51% 67.2 48% 88.4 48%

BERxiT 0.0 76% 63.5 76% 75.6 76% 73.3 78% 68.2 80% 55.3 77% 79.5 76%
12.3 52% 78.4 51% 82.9 51% 87.0 48% 89.1 49% 67.3 47% 88.3 49%

PABEE 0.0 75% 63.9 77% 75.8 75% 73.6 81% 68.6 82% 55.8 75% 79.9 77%
0.0 50% 78.9 52% 83.1 53% 87.2 46% 89.6 49% 67.7 46% 88.7 48%

F-PABEE 0.0 75% 66.9 72% 81.5 77% 76.2 75% 79.6 82% 56.0 76% 80.5 76%
13.6 52% 83.9 53% 87.3 53% 88.6 54% 90.8 49% 68.1 47% 92.3 48%

Table 1. Experimental results of different early exiting methods with BERT backbone on the GLUE benchmark.

The smaller the value of s(pi−1, pi), the prediction distribu-
tions are more consistent with each other. The premise of the
model’s early exit is that the comparison scores between suc-
cessive layers are relatively small; The similarity threshold
thre is a hyper-parameter. We use pati to store the times that
the cross-layer comparison scores are consecutively less than
the threshold thre when the model reaches current layer i:

pati =

{
pati−1 + 1 s(pi−1, pi) < thre

0 s(pi−1, pi) >= thre

}
(3)

If s(pi−1, pi) is less than the similarity score threshold
thre, then increase the patience counter by 1. Otherwise, re-
set the patience counter to 0. This process is repeated until
pat reaches the pre-defined patience value P0. The model
dynamically stops inference and exits early. However, if this
condition is never met, the model uses the final classifier layer
to make predictions. This way, the model can stop inference
early without going through all layers.

3.2. Similarity measures for SLC and MLC tasks

Under the framework of F-PABEE, we can adopt different
similarity measures for predicted probability distributions.
This work uses the knowledge distillation objectives as the
similarity measures [34]. When the model reaches the cur-
rent layer l, for SLC tasks, we compare a series of similarity
measures of F-PABEE, denoted as:
F-PABEE-KD: It adopts the knowledge distillation objective
from probability mass distribution pl−1 to pl:

s(pl−1, pl) = −
k∑

j=1

pl−1
j log(plj); (4)

F-PABEE-ReKD: It adopts the knowledge distillation objec-
tive in the reverse direction, from probability mass distribu-
tion pl to pl−1:

s(pl, pl−1) = −
k∑

j=1

plj log(p
l−1
j ); (5)

F-PABEE-SymKD: It adopts a symmetrical knowledge distil-
lation objective:

SymKD = s(pl−1, pl) + s(pl, pl−1); (6)

F-PABEE-JSKD: It adopts another symmetrical distillation
objective, similar to Jenson-Shannon divergence:

JSKD =
1

2
s(pl−1,

pl−1 + pl

2
) +

1

2
s(pl,

pl−1 + pl

2
) (7)

In addition, for MLC tasks, we transform them into mul-
tiple binary classification problems and sum the similarity
scores of all categories, and the formulas are denoted as:
F-PABEE-KD:

s(pl−1, pl) = −
k∑

j=1

2∑
i=1

pl−1
ji log(plji); (8)

F-PABEE-ReKD:

s(pl, pl−1) = −
k∑

j=1

2∑
i=1

pljilog(p
l−1
ji ); (9)

The formulations of F-PABEE-SymKD and F-PABEE-
JSKD for MLC tasks are similar to those of SLC tasks.

3.3. Training procedure

F-PABEE is trained on SLC and MLC tasks, while the acti-
vation and loss functions are different. For SLC tasks, we use
the softmax activation function and cross-entropy function ac-
cording to the tasks. In contrast, we use the sigmoid activation
function and binary cross-entropy function for MLC tasks.

After that, we optimize the model parameters by minimiz-
ing the overall loss function L, which is the weighted average
of the loss terms from all classifiers:

L =

n∑
j=1

jLj/

n∑
j=1

j (10)



Fig. 2. Speed-accuracy curves of F-PABEE, PABEE and BERxiT on SLC tasks with BERT backbone.

4. EXPERIMENTS

4.1. Tasks and Baselines

We evaluate F-PABEE on GLUE benchmark [35] for SLC
tasks and four datasets for MLC tasks: MixSNLPS [36], Mix-
ATS [37], AAPD [38], and Stackoverflow [39]. we com-
pare F-PABEE with three groups of baselines: (1) BERT-
base; (2) Static exiting; (3) Dynamic exiting methods, in-
cluding BrachcyNet [40], Shallow-Deep [28], BERxiT [30],
and PABEE. Considering the flops of inferencing one with the
whole BERT as the base, the speed-up ratio is defined as the
average ratio of reduced flops due to early exiting.

4.2. Experimental setting

In training process, we perform grid search over the batch
size of {16, 32, 128}, and learning rate of {1e-5, 2e-5, 3e-
5, 5e-5} with an AdamW optimizer [41] . The batch size in
the inference process is 1. We implement F-PABEE on the
bases of HuggingFace Transformers [42]. All experiments
are conducted on two Nvidia TITAN X 24GB GPUs.

4.3. Overall comparisons

In Table 1, we compare F-PABEE with other early exiting
strategies. We adjust the hyper-parameters of F-PABEE and
other baselines to ensure similar speedups with PABEE. It

shows that F-PABEE balances speedup and performance bet-
ter than baselines, especially for a large speedup ratio. More-
over, we draw the score-speedup curves for BERxiT, PABEE,
and F-PABEE. It shows that F-PABEE outperforms the base-
line models on both SLC (Fig 2) and MLC tasks(Fig 3). Fur-
thermore, the distribution of executed layers (Fig 4) indicates
that F-PABEE can choose the faster off-ramp and achieve a
better trade-off between accuracy and efficiency by flexibly
adjusting similarity score thresholds and patience parameters.

4.4. Ablation studies

Ablation on different PLMs F-PABEE is flexible and can
work well with other pre-trained models, such as ALBERT.
Therefore, to show the acceleration ability of F-PABEE with
different backbones, we compare F-PABEE to other early ex-
iting strategies with ALBERT base as the backbone. The re-
sults in Fig 5 show that F-PABEE outperforms other early
exiting strategies under different backbones by large margins
on both SLC and MLC tasks, indicating that F-PABEE can
accelerate the inference process for numerous PLMs.

Comparisons between different similarity measures
We consider F-PABEE with different similarity measures,
denoted as F-PABEE-KD, F-PABEE-ReKD, F-PABEE-
SymKD, and F-PABEE-JSKD, and the results are presented
in Fig 6. F-PABEE-JSKD performs the best on both SLC and
MLC tasks. We suppose that F-PABEE-JSKD is symmetric,
and the similarity discrimination is more accurate than asym-



Fig. 3. Speed-accuracy curves of F-PABEE, PABEE and BERxiT on MLC tasks with BERT backbone.

Fig. 4. The distribution of executed layers of MRPC and MixSNIPS on average at different speeds (50%, 75%).

Fig. 5. Speed-accuracy curves of F-PABEE, PABEE and BERxiT on SLC and MLC tasks with ALBERT backbone.



Fig. 6. Speed-accuracy curves of different similarity measures on SLC and MLC tasks with BERT backbone.

metric measures. Therefore, it is better at determining which
samples should exit at shallow layers and which should go
through deeper layers.

5. CONCLUSIONS

We proposed F-PABEE, a novel and efficient early exiting
method that combines PABEE with a softer cross-layer com-
parison strategy. F-PABEE is more flexible than PABEE since
it can achieve different speed-performance tradeoffs by ad-
justing the similarity score thresholds and patience parame-
ters. In addition, we investigate the acceleration ability of F-
PABEE with different backbones. Moreover, we compare the
performances of F-PABEE with different similarity measures.
Extensive experiments on SLC and MLC demonstrate that:
(1) F-PABEE performs better than the previous SOTA adap-
tive early exiting strategies for both SLC and MLC tasks. As
far as we know, we are the first to investigate the early exiting
methods for MLC tasks. (2) F-PABEE performs well on dif-
ferent PLMs such as BERT and ALBERT. (3) Ablation stud-
ies show that F-PABEE-JSKD performs best for F-PABEE
with different similarity measures.
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