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ABSTRACT

In recent years, the joint training of speech enhancement front-end
and automatic speech recognition (ASR) back-end has been widely
used to improve the robustness of ASR systems. Traditional joint
training methods only use enhanced speech as input for the back-
end. However, it is difficult for speech enhancement systems to di-
rectly separate speech from input due to the diverse types of noise
with different intensities. Furthermore, speech distortion and resid-
ual noise are often observed in enhanced speech, and the distortion
of speech and noise is different. Most existing methods focus on fus-
ing enhanced and noisy features to address this issue. In this paper,
we propose a dual-stream spectrogram refine network to simultane-
ously refine the speech and noise and decouple the noise from the
noisy input. Our proposed method can achieve better performance
with a relative 8.6% CER reduction.

Index Terms— robust speech recognition, residual noise,
speech distortion, refine network, joint training

1. INTRODUCTION

Automatic speech recognition system has been widely applied on
mobile devices for human-machine communication. Recently, ASR
systems with end-to-end neural network architectures have devel-
oped rapidly [1, 2] and achieved promising performance. Although
significant progress has been achieved in ASR on clean speech, the
performance of ASR systems is still far from desired in realistic sce-
narios. There are various types of noise with different Signal-to-
Noise Ratios(SNRs), which will sharply degrade the performance
of the ASR systems. Thus, speech recognition in realistic scenarios
remains a considerable challenge

Robust speech recognition has been widely studied to improve
the performance of ASR under complex scenes [3, 4, 5]. In [6],
they made an investigation of end-to-end models for robust speech
recognition. There are two mainstream methods for robust speech
recognition. One method is to augment the input data with vari-
ous noises and reverberation to generate multi-condition data [7, 8].
Subsequently, the augmented data is fed to the end-to-end model.
Another method is to preprocess the input speech with speech en-
hancement techniques. The existing works mainly use a two-stage
approach to train a robust speech recognition model. The input
speech is first passed through a speech enhancement (SE) module,
and the enhanced speech is subsequently passed through an end-to-
end speech recognition model. Existing work [9] has shown that
Long Short-Term Memory (LSTM) RNNs can be used as a front-
end for improving the noise robustness of robust ASR system.

*Corresponding author

Fig. 1. Block diagram of joint training framework.

Joint training of the SE front-end and ASR back-end has been
investigated to improve ASR performance [10]. However, the speech
enhancement based on deep neural network often introduces speech
distortion and remains residual noise which may degrade the perfor-
mance of ASR models. In [11], they investigate the causes of ASR
performance degradation by decomposing the SE errors into noise
and artifacts. To alleviate the speech distortion, [12, 13, 14] dynam-
ically combined the noisy and enhanced features during training. In
[15], they investigate the over-suppression problem. [16] presents a
technique to scale the mask to limit speech distortion using an ASR-
based loss in an end-to-end fashion. In [17], they propose a spectro-
gram fusion (SF)-based end-to-end robust ASR system, in which the
mapping-based and masking-based SE is simultaneously used as the
front end. In [18], they provide insight into the advantage of magni-
tude regularization in the complex compressed spectral loss to trade
off speech distortion and noise reduction.

Although the existing joint training methods have greatly im-
proved the robustness of ASR, there are still some problems. Specif-
ically, the performance of ASR is affected by distortion or residual
noise generated in SE. Few existing works have investigated effec-
tive methods for reducing distortion or residual noise. The main ex-
isting methods only fuse the distorted spectrogram with the original
noisy speech features. There is still some residual noise in the fused
features. In this paper, we propose a speech and noise dual-stream
spectrogram refine network (DSRNet) to estimate speech distortion
and residual noise. We build the DSRNet to post-process the en-
hanced speech. Instead of only predicting the source speech and
ignoring the noise features, we reuse the predicted features to refine
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Table 1. The data structure of our dataset.
Subset SNR Noise corpus

Training randomly selected from
[-10, -5, 0, 5] dB

100 Nonspeech
Sounds

Development randomly selected from
[-10, -5, 0, 5] dB

100 Nonspeech
Sounds

Test -10, -5, 0, 5 and
random dB

100 Nonspeech
Sounds

the speech and noise simultaneously and decouple the noise features
from the noisy input. We introduce a weighted MSE-based loss func-
tion that controls speech distortion and residual noise separately.

2. PROBLEM FORMULATION

Speech enhancement aims to remove the noise signals and estimate
the target speech from noisy input. The noisy speech can be repre-
sented as:

y(t) = s(t) + n(t) (1)

where y(t), s(t), and n(t) denote the observed noisy signals, source
signals and noise signals, respectively. We use the X (t, f), S(t, f) and
N(t, f) as the corresponding magnitude spectrogram of noisy, source
and noise signals, which still satisfy this relation:

Y(t, f) = S(t, f) + N(t, f) (2)

where (t,f) denotes the index of time-frequency(T-F) bins. We omit
the (t,f) in the rest of this paper. The noisy magnitude spectrogram
Y is used as the input of speech enhancement network. We formu-
late speech enhancement task as predicting a time frequency masks
between noisy and clean spectrogram. The conventional speech en-
hancement can be represented as follows:

M = SE(Y)

Ŝ = M⊙Y
(3)

Lenh = MSE(Ŝ,S) (4)

where M is the estimated mask, Ŝ is the estimated magnitude spec-
trogram of source signals and ⊙ denotes element-wise multiplica-
tion. Speech distortion or residual noise are often observed in the
enhanced speech. We assume that there are still high correlations
between the enhanced speech and predicted noise features. We con-
sider the predicted magnitude spectrogram of noise signal N̂ is ob-
tained by subtracting the enhanced signal Ŝ from the noisy signal
Y. The predicted spectrogram Ŝ is composed of the source signal
and the prediction error Es which is caused by speech distortion and
residual noise. And the predicted spectrogram N̂ is composed of
noise signal and the prediction error which may contain the missing
information from source signal.

N̂ = Y − Ŝ (5)
Ŝ = S + Es (6)

N̂ = N + En (7)

3. PROPOSED METHODS

3.1. Network Architecture

In this section, we discuss the details of the proposed method. We
propose a speech and noise dual-stream spectrogram refine network

Fig. 2. Block diagram of spectrogram refine network.

(DSRNet) with a joint training framework to reduce speech distor-
tion and residual noise as shown in Figure 1. First, we feed noisy
magnitude spectrogram features to the LSTM mask-based SE mod-
ule. Then the estimated magnitude spectrogram Ŝ and the predicted
noise magnitude spectrogram N̂ are fed to the DSRNet to generate
the refined magnitude spectrogram. We then extract 80-dim Fbank
features from the refined spectrograms as input to the ASR model.

3.2. Spectrogram Refine

Figure 2 shows the block diagram of the proposed speech and noise
dual-stream spectrogram refine network. One stream computes the
residual value for speech, and the other stream computes the resid-
ual value for noise. Then we use the residual values to refine the
enhanced speech and predicted noise, respectively.

3.2.1. Dual-stream Spectrogram Refine Network

The dual-stream spectrogram refine network have two streams, one
stream refines the enhanced speech and the other stream refines the
predicted noise. They share the same network structure but have
separate network parameters. We use DSRNet to compute the resid-
ual values, denoted as Θ, which may contain over-suppression and
missing information. The residual values are added back to the spec-
trograms to counteract the undesired noise or speech and recover the
distorted part. The structure of the DSRNet is shown in Figure 2.
We can obtain the formulations as follows:

Θs = Wŝ(WsŜ +WnN̂) + bŝ

Θn = Wn̂(WsŜ +WnN̂) + bn̂

(8)

S̃ = Ŝ + Θs

Ñ = N̂ + Θn

(9)

where Θs and Θn are the residual values. Wŝ, Wn̂, Ws, and Wn are
the linear transformations, bŝ and bn̂ are the bias terms.



Table 2. CER results of the different methods on different test sets.

Model Joint Training CER(%)
α β λ Paras(M)-10dB -5dB 0dB 5dB Avg Random

Transformer 39.7 26.7 19.3 14.8 25.13 23.9 — — — 16.67
SE+Trans No 46.2 30.5 21.3 15.4 28.35 26.3 — — — 30.59
SE+Trans Yes 35.0 23.1 16.6 13.0 21.93 20.8 300 — — 30.59

SE+DSRN+Trans Yes 32.6 21.4 16.0 12.7 20.68 19.7 300 0 — 30.85
SE+DSRN+Trans Yes 31.8 21.2 15.6 12.6 20.30 19.6 300 100 0.5 30.85
SE+DSRN+Trans Yes 31.4 20.7 15.4 12.6 20.03 19.2 300 100 Eq.11 30.85

3.2.2. Weighted Speech Distortion Loss

The distortion of the spectrogram is different for speech and noise.
Therefore, we propose a novel weighted speech distortion loss func-
tion in which both speech estimation error and noise prediction error
are considered to overcome the distortion problem. The loss function
includes speech error term and noise error term. When the speech
error is greater, we focus more on the speech. When the noise error
is greater, we focus more on the noise.

Es̃ =
∑

t,f
|S− S̃|

Eñ =
∑

t,f
|N− Ñ|

(10)

Therefore, the proposed mean-squared-error based loss function
enables control of speech distortion and residual noise simultane-
ously. And the weighting λ of loss function is time-varying between
batches. Therefore, the loss function can be formulated as:

λ =
Es̃

Es̃ + Eñ
(11)

Lrefine = λMSE(S̃,S) + (1− λ)MSE(Ñ,N) (12)

3.2.3. Joint training

We use a multi-task learning approach to jointly optimize the front-
end and back-end to improve speech recognition performance. The
loss function includes three terms. The weightings of speech en-
hancement and refine network loss are α and β, respectively.

L = Lasr + αLenh + βLrefine (13)

4. EXPERIMENTS

4.1. Dataset

Our experiments are conducted on the open-source Mandarin speech
corpus AISHELL-1[19]. AISHELL-1 contains 400 speakers and
more than 170 hours of Mandarin speech data. The training set
contains 120,098 utterances from 340 speakers. The development
set contains 14,326 utterances from 40 speakers. The test set con-
tains 7176 utterances from 20 speakers. We manually simulate
noisy speech on the AISHELL-1 with 100 Nonspeech Sounds noise
dataset. We use the noise dataset to mix with the clean data of
AISHELL-1 with 4 different SNRs each -10dB, -5dB, 0dB and
5dB. And we generate four SNRs test sets, and a random SNR test
set. The simulated data and noise data are released on Github1 for
reference. The details are shown in Table 1.

1https://github.com/manmushanhe/DSRNet-data

4.2. Experimental Setup

In the experiments, we implemented a joint training system using
the recipe in ESPnet[20] for AISHELL. The input waveform is con-
verted into STFT domain using a 512 window length with 128 hop
length. The learning rate is set to 0.001 and the warm-up step size is
set to 30, 000. In the SE module, the number of layers in the LSTM
is two and the hidden size is 1024. In the DSRNet, the input and out-
put sizes of the linear layers are 257. We use a Transformer based
ASR model with 80-dim Log-Mel features as input to the back-end.
Hyperparameters α and β are 300 and 100 respectively. For fair
comparison, the training epoch is set to 70 for all experiments. When
the strategy of joint training is not used, we first pre-train the speech
enhancement model, and then freeze the parameters of the SE model
to train the ASR back-end with the ASR loss.

4.3. Results

4.3.1. Evaluate the effectiveness of the proposed method

We first compare our method with different models, and the re-
sults are shown in Table 2. In Table 2, “DSRN” denotes our pro-
posed speech and noise dual-stream spectrogram refine network.
“SE+Trans” denotes the SE front-end and ASR back-end model.
As we can see, the performance of the jointly trained model can be
significantly improved. When there is no joint training, we first train
a SE model using the magnitude spectral loss, and then freeze its
parameters to train the ASR system. The final objective of SE train-
ing and ASR training are different. SE is trained on the magnitude
spectral loss and ASR is trained on the classification loss. There is
a mismatch between SE and ASR. In the absence of joint training,
the SE parameters cannot be tuned according to the ASR loss. The
performance is bad. In the joint training, the SE network is not
only learned to produce more intelligible speech, it is also aimed to
generate features that is beneficial to recognition.

We conduct experiments to see how the result is affected by the
weighting of SE loss in the joint training. Table 3 reports the aver-
age CER results on four SNRs test sets with different weightings of
SE loss. And we find that the weighting of SE loss has a significant
impact on the result. This may be because the loss of ASR is con-
siderably greater than that of SE. Experiments demonstrate that the
performance of joint training model strongly depends on the relative
weighting between each task’s loss. When we continue to increase
the value of α, we find that the performance is no longer improving.
There is an upper bound on the performance of using only SE net-
works with magnitude spectral loss. Therefore, we use the DSRNet
with speech distortion loss to counteract the distortions and artifacts
that are generated during SE.

Meanwhile, to evaluate the contribution of the DSRNet, we use
the SE+Trans joint training model as baseline. We set β to 0 to inves-
tigate the impact of the speech distortion loss function. The results
show that both the DSRNet and the loss function contribute to the



Table 3. CER results with different weightings.
Model loss weightings(α) CER Avg(%)

SE+Trans

1 41.53
50 22.10

100 22.15
200 21.98
300 21.93
400 21.90

performance. And we set λ to 0.5 to investigate the impact of the
weight λ in Eq.11. The results show that the method of λ computed
based on Eq.11 is also effective. Compared to the baseline approach,
we achieve better performance with an average relative 8.6% CER
reduction on four SNRs test sets, only at the cost of 0.26M param-
eters. The increase in model parameters and computations is slight.
We experimented with other values of β, and in general, β equal to
100 worked best, so we didn’t show it in the table.

4.3.2. Visualization of Spectrograms

In order to further understand how the DSRNet works, we visual-
ize the spectrograms from different model, as shown in Figure 3.
(a) is the noisy spectrogram of simulated speech. (b) is the clean
spectrogram of clean speech. (c), (d) is the enhanced spectrogram
in the baseline system and the enhanced spectrogram in our method,
respectively. And (e) is the refined spectrogram in our method.

Existing studies show that speech content is mainly concen-
trated in the low-frequency band of spectrograms. From (c) and
(d), we see that part information in the low-frequency band of
enhanced spectrograms is missing and distorted, which means an
over-suppression problem caused by SE. Comparing (d) and (e), we
can observe that the low-frequency band of the spectrogram is re-
fined. The enhanced spectrograms could recover some information
in the low-frequency band with the help of the DSRNet. This may
mean the low-frequency band of spectrograms is more important for
the ASR. These results show that the DSRNet indeed helps improve
ASR performance and demonstrate the effectiveness of our method.

4.3.3. Reference Systems

To evaluate the performance of the proposed method, we conduct
experiments on four different systems for comparison. Table 4 shows
the results of reference systems.

Cascaded SE and ASR System[21]: this paper jointly opti-
mizes SE and ASR only with ASR loss. They investigate how a
system optimized based on the ASR loss improves the speech en-
hancement quality on various signal-level metrics. However, the re-
sults show that the cascaded system tend to degrade the ASR perfor-
mance.

GRF ASR System[14]: they propose a gated recurrent fusion
(GRF) method with a joint training framework for robust ASR. The
GRF unit is used to combine the noisy and enhanced features dy-
namically. We find that it performs worse in our experiments.

Specaug ASR System[7]: they present a data augmentation
method on the spectrogram for robust speech recognition. The fre-
quency mask and time mask are applied to the input of the ASR
model, which help the network improve its modeling ability.

Conv-TasNet and ASR System[22]: this paper propose to com-
bine a separation front-end based on Convolutional Time domain
Audio Separation Network (Conv-TasNet) with an end-to-end ASR
model. They jointly optimize the network with the Scale-Invariant-
Signal-to-Noise Ratio (SI-SNR) loss and a multi-target loss for the
ASR system.

Table 4. CER results of different methods.
Model CER Avg(%)
Cascaded SE and ASR System 29.05
GRF ASR System 29.01
Specaug ASR System 23.50
Convtasnet and ASR System 22.35
Our proposed System 20.03

(a) noisy (b) clean

(c) baseline (d) enhanced-our

(e) refined-our

Fig. 3. Spectrograms from different methods. (a)noisy spectro-
gram. (b)clean spectrogram. (c)enhanced spectrogram from base-
line. (d)enhanced spectrogram from our method. (e)refined spectro-
gram from our method.

5. CONCLUSION

In this paper, we explored the effect of weights of loss function on
ASR performance. Experiment results show that the performance of
joint training systems highly depends on the relative weights of each
loss and the speech enhancement network will introduce speech dis-
tortion. We proposed a lightweight speech and noise dual-stream
spectrogram refine network with a joint training framework for re-
ducing speech distortion. The DSRNet estimate the residual val-
ues by reusing the enhanced speech and predicted noise, which can
counteract the undesired noise and recover the distorted speech. We
designed a weighted speech distortion loss to control of speech dis-
tortion and residual noise simultaneously. Moreover, the proposed
method is simple to implement and introduces a few computational
overheads. Final results show that the proposed method performs
better with a relative 8.6% CER reduction.
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