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ABSTRACT
The success of the multilingual automatic speech recognition

systems empowered many voice-driven applications. However, mea-
suring the performance of such systems remains a major challenge,
due to its dependency on manually transcribed speech data in both
mono- and multilingual scenarios. In this paper, we propose a novel
multilingual framework – eWER3 – jointly trained on acoustic and
lexical representation to estimate word error rate. We demonstrate the
effectiveness of eWER3 to (i) predict WER without using any internal
states from the ASR and (ii) use the multilingual shared latent space
to push the performance of the close-related languages. We show our
proposed multilingual model outperforms the previous monolingual
word error rate estimation method (eWER2) by an absolute 9% in-
crease in Pearson correlation coefficient (PCC), with better overall
estimation between the predicted and reference WER.

Index Terms— Multilingual WER estimation, End-to-End sys-
tems

1. INTRODUCTION

Recent years have witnessed a surge in both mono- and multilin-
gual speech recognition performances, with accuracy comparable or
even outperforming the human performance on established bench-
marks [1, 2]. With such success, automatic speech recognition (ASR)
systems have been commoditized as speech processing pipelines in
many voice-driven applications such as personal assistant devices and
broadcast media monitoring among others. However, our means of
evaluating the usefulness of the ASR output have remained largely
unchanged.

Word error rate (WER) is the standard measure for evaluating
the performance of ASR systems. To obtain a reliable estimation of
the WER, a minimum of two hours of manually transcribed test data
is typically required – a time-consuming and expensive process. Of-
ten voice-driven applications require quick quality estimation of the
automated transcription, which is not feasible with such traditional
reference-based measures. Moreover, even with offline applications,
it is not always viable to obtain gold references (especially in multi-
lingual scenarios) to evaluate the transcription quality. Thus, there
is a need to develop techniques that can automatically estimate the
quality of the ASR transcription without such manual effort [3, 4]
and handle multilingualism.

Several studies have explored the automatic estimation of the
WER. These studies included a large set of extracted features
(with/without internal access to the ASR system) to train neural
regression or classification models [5, 6, 7]. Some studies proposed a
novel neural zero-inflated model [8], while others model uncertainty
[9] in predictions to handle different challenges. However, all these
studies are conducted with networks directly trained and tested in
monolingual settings.

In this work, we design a single multilingual end-to-end model
capable of estimating WER given the raw audio and the automatic

transcription from different (mono- and multilingual) off-the-shelf
ASR systems without having access to the ASR’s internal feature
representation (the concept is shown in Figure 1). For this, we entail
the large self-supervised pretrained models as feature extractor and
exploits the available multilingual corpora.

We evaluate our results using Arabic, Italian, Spanish, English
and Russian – test sets. We train a monolingual estimator and compare
it with our proposed multilingual model to show its efficacy for better
performance. Our contributions are:

• Design the first multilingual WER estimation without using
any internal features from the ASR (black-box);

• Compare our method with previous state-of-the-art results
(e-wer [6] and e-wer2 [7]);

• Analyse the effect of imbalanced WER distribution on the es-
timator’s performance and propose a new sampling technique.

Fig. 1: Overview of the study concept and proposed framework.

2. E2E MULTILINGUAL WER ESTIMATOR

Figure 2 shows an overview of the end-to-end system architecture
designed to estimate speech recognition WER with no gold-standard
reference transcription. As input to the estimator, we first pass raw
audio along with its automatic transcription obtained from the speech
recognition systems. We extract the speech and lexical representa-
tions and utilize these representations jointly to train the multilingual
regression model.

Acoustic representation: We use XLSR-53 to extract phoneme
aware speech representation. The XLSR-53 model is a multilin-
gual variation of wav2vec 2.0 model fine-tuned on cross-lingual
phoneme-recognition task [14, 15]. For our study, we remove the
output (language model head) and use the representation only. We
use XLSR-53 as a feature extractor, which includes a cascaded tem-
poral convolutional network to map raw audio, X = {x1, x2.., xn}
to the latent speech representation Z = {z1, z2.., zt}. This latent
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Fig. 2: End-to-End Architecture used to estimate WER. A∗ : acoustic representation from BLSTM and L: the lexical representation.

Lang ASR Trained on Architecture ASR Type Estimator Trained using Estimator Tested on
English LibriSpeech (960hours) Conformer Mono LibriSpeech + TEDLIUM3 dev TEDLIUM3 test
Spanish CommonVoice (CV-ES) [10] Conformer Mono CV-ES dev CV-ES test
Italian CommonVoice (CV-IT) Conformer Mono CV-IT dev CV-IT test
Russian CommonVoice (CV-RU) Conformer Mono CV-RU dev CV-RU test

Arabic QASR (Arabic) +
LibriSpeech (English) (200hrs) [11] Conformer Multi MGB2 [12] + QASR dev SUMMA [13]

Table 1: Description of the ASR systems used to train and/or test the proposed estimator along with the Estimator training and test set. Lang.
shows the language data used to train the estimator.

Train (Dev | Test) T.D (hours) A.D (secs) A.U (words) #
Arabic 10.36 (0.56 | 2.94) 6.14 (6.08 | 7.52) 12.66 (12.45 | 13.96) 6077 (332 | 1410)
English 3.72 (0.31 | 2.62) 5.83 (5.65 | 8.18) 16.68 (16.04 | 23.95) 2295 (196 | 1151)
Spanish 7.37 (0.84 | 17.31) 6.05 (6.11 | 6.12) 10.11 (10.17 | 9.84) 4384 (496 | 10179)
Italian 4.94 (0.53 | 12.26) 5.94 (5.91 | 6.13) 10.2 (10.13 | 9.74 ) 2991 (322 | 7200)
Russian 1.73 (0.17 | 9.57) 5.94 (5.83 | 5.99) 9.86 (9.72 | 9.58) 1045 (102 | 5748)

Table 2: Train, Dev and Test (Dev and Test in bracket seperated by |) Data Description. T.D: Total dataset duration in hours; A.D: Average
utterance duration in seconds; A.U: Average utterance length in tokens; #:Total instances.

information is then passed through 24 Transformer [16] blocks with
model dimension of 1, 024 and 16 attention heads, to capture contex-
tual representations, C (g : Z 7→ C). We then pass the frame-wise
representation to a bi-directional LSTM and extracted the last step
representations (

←−
A,
−→
A ).

Lexical representation: Simultaneously, to extract the lexical em-
beddings, we pass the ASR transcription to the XLM-RoBERTa-
Large model [17], pretrained using 100 different languages. The
pretrained model follows the same architecture as BERT [16], with
24-layers of transformer modules – with 1, 024 hidden-state, and 16
attention heads. The model uses a byte-level BPE as a tokenizer
and outputs the sequence of hidden-states for the whole input sen-
tence. To obtain the final lexical representation (L), we averaged the
embeddings over the sequences.

Combining representations: We concatenate the output represen-
tations from the acoustic and lexical module (

←−
A +

−→
A + L) and pass

it through two fully-connected layers, before the output layer, for the
regression task.

3. EXPERIMENTAL SETUP

3.1. Speech Recognition Systems

To train the estimator, we opt for the current state-of-the-art conformer
[18] based end-to-end speech recognition systems (see Table 1).

For the Spanish, Italian, and Russian ASR systems, the models
are trained using their respective CV train sets. The model has 12
encoder layers and 6 decoder layers each with 2, 048 encoder/decoder
units from FFN and 4 attention heads with 256 transformation dimen-
sions and 15 CNN kernels.

As for the English ASR, we use a large conformer model with 12
encoder and 6 decoder layers containing 8 attention heads with 512
transformation dimensions and 31 CNN kernels. This large ASR is
trained using the well-known 960 hours of librispeech data. We use
similar architecture for multilingual Arabic ASR [19] trained with
Arabic QASR [11] along with English librispeech data.

3.2. Data

Data Preparation: We train the multilingual estimator using the
dataset mentioned in Table 1. The input audio to the estimator is first
down-sampled to 16KHz to match the ASR input sample rate. For



Fig. 3: Data imbalance and missing target values.

training the model, we select audio instances with a duration of 10
seconds or less; this is based on the upper tail of overall duration
distribution.

Imbalanced Distribution: Given the remarkable performance of
the current end-to-end ASR models, the WER often exhibits imbal-
anced distributions, where certain target values have significantly
fewer observations than others. In this case, the majority of the train-
ing set has a WER of ‘0’, making the training data highly skewed
(see Figure 3). Moreover, the dataset shows a tendency of missing
data for certain target values, thus making the task more challenging.
In order to handle the abundance of ‘0’ WER scores in the training
set, we sampled n instances from each language with WER = 0.
We determine the value n based on the sum of instances falls under
the next two most frequent score groups.

Data Split: For our dev set, we divide the training dataset into 10
bins of target WER, with equal intervals such as [0, 10), [10, 20) · · ·
[90, 100]. From each bin, we then randomly sample ≈10% of the
instances to create the validation set. The details of the resultant
(balanced) split are shown in Table 2.

Estimator Output: As the output score of the estimator, it is worth
noting that we bound the target value (WER) of the estimator to a
range of [0,1] (i.e. 0 - 100%).1

3.3. WER Estimator Design

Model Parameters: We train the end-to-end WER estimator using
a an Adam optimizer for 20 epochs with a learning rate of 1e − 3
and a dropout-rate of 0.1, and freeze the parameters of the pretrained
self-supervised models. In the acoustic pipeline, we use one layer
of BiLSTM model and for the joint training, we opt for two fully-
connected layers (600, 32 neurons) with ReLU activation function.
As for the loss function, we use mean squared error. Same architecture
and hyperparameters are used to train mono- and multilingual models
with balanced and natural distribution data.

3.4. Evaluation Measures

Given the uneven scores distribution (towards small WER value),
we use Pearson correlation coefficient (PCC) as our main evaluation
metric. However, we also report root mean square error (RMSE) to

1If WER > 100%, the value is scaled down to 100.

compare with previous studies [6, 7]. Moreover, to effectively esti-
mate the eWER3 for the complete test set, we report weighted WER:
(eWER3 =

∑ ̂WERutt∗Dur(utt)∑n Dur
) using the utterance level esti-

mated WER (ŴERutt) and the corresponding duration (Dur(utt)).

4. RESULTS AND DISCUSSION

4.1. Monolingual Comparison

We benchmark the proposed framework eWER3 in a monolingual
setting (Arabic) and compare it with the previous estimation models
– eWER and eWER2. The results, reported in Table 3, show that
our model outperforms both eWER and eWER2 with an absolute
increase of 3% and 9% in PCC, and a decrease of 21% and 6%
in RMSE respectively. Such improvement indicates the estimation
power of our architecture without using any additional feature from
the ASR decoder.

Moreover, when the monolingual models (for both Arabic and
English – in Table 4) were tested in the cross-lingual Italian dataset,
both models’ performance (both in correlation coefficient and RMSE)
decrease drastically. Yet, it is observed that the Italian test set ben-
efits more from the English monolingual model with RMSE: 0.19
compared to RMSE:0.32 in the Arabic model. Thus indicating the
potential advantage of having shared latent space for close languages
in multilingual settings.

Fig. 4: Cumulative WER over time with all sentences for (a) Arabic
SUMMA test set. X-axis is the number of instances and Y-axis is
Aggregated WER in %.

4.2. Multilingual E2E Estimator Performance

Table 4 shows that the multilingual model gives a comparable corre-
lation and RMSE compared to the monolingual models. We notice
the 4% performance increase in PCC for English test set when in
multilingual setting, showing the added advantage of such a multi-
lingual estimator. Furthermore, for all the language test sets (Arabic,
English, Italian, Spanish, Russian), in addition to a smaller RMSE
and significant correlation – per utterance, the overall predicted WER
is also within a close range (0− 5 points) of the actual WER.

For brevity, we present the Arabic Summa test set’s cumulative
WER aggregated over the sentences in Figure 4 and the corresponding
scatter plot for the Arabic (best PCC obtained) and Russian (lowest
performing PCC) test sets in Figure 5.



Ar:SUMMA PCC RMSE Input to the Estimator
eWER 0.66 0.35 Lexical + Grapheme + Decoder + Numerical [6]
eWER2 0.72 0.20 MFCC+ Lexical + Phonetic [7]
eWER3 mono 0.75 0.14 Raw Audio, Lexical Transcription

Table 3: Monolingual (Arabic) transcription quality estimator results on Ar:SUMMA test set.

Sets PCC RMSE eWER3 WER #
Monolingual Estimator Model - Arabic

Ar:SUMMA 0.75 0.14 16.0% 18.0% 1410
It:CV 0.45 0.32 41.0% 17.0% 7200

Monolingual Estimator Model - English
En:TedL 0.62 0.14 7.0% 12.0% 1151
It:CV 0.49 0.19 10.0% 17.0% 7200

Multilingual Estimator Model
Ar:SUMMA 0.74 0.15 15.0% 18.0% 1410
It:CV 0.60 0.17 14.0% 17.0% 7200
Es:CV 0.53 0.14 13.0% 11.0% 10179
En:TedL 0.66 0.14 8.0% 12.0% 1151
Ru:CV 0.51 0.12 6.0% 7.0% 5748

Table 4: Reported performance of monolingual and multilingual
WER estimator on Arabic (Ar), English (En), Italian (It), Spanish (Es)
and Russian (Ru) test sets.

Fig. 5: Scatter Plot for test sets with highest PCC 0.74 – Arabic (a);
and the lowest PCC 0.51 – Russian.

4.3. Effects of Imbalanced Data and Sampling

We analyse the effect of training the model with sampled data (Model
Sampled: ψ) instead of natural distribution (Model Natural:ϕ). With
respect to the ψ, we noticed ϕ has a slightly better correlation coeffi-

cient, yet has higher RMSE-values and large difference in aggregated
estimated eWER3 than the Oracle WER. For example, for ES:CV test
set, ϕ(PCC) = 0.58, ϕ(RMSE) = 0.15, ϕ(eWER3) = 7.0%,
whereas, ψ(PCC) = 0.53, ψ(RMSE) = 0.14, ψ(eWER3) =
13.0%.2

The density curve, from ϕ and ψ model predictions (Figure 6),
indicates that with natural distribution the model (ϕ) learns to predict
lower WER better than the ψ. However, the prediction is scaled down
to a lower range (see the shift in the peak of both the curves) thus
increasing RMSE and the difference between the overall predicted
eWER3 and Oracle WER. This is a potential limitation of the current
study and a future endeavor for experimenting with zero-inflated
output layers [20] for such a multilingual network.

Fig. 6: Density curves using estimated WER for the multilingual
model trained using sampled distribution (blue line) and natural
distribution (orange) train set, showing the effect of imbalanced data
labels. x-axis represents WER. The prediction is from aggregated
in-language test sets.

5. CONCLUSION

In this study, we propose a novel framework, for estimating mul-
tilingual WER without the need of manual transcription. Our pro-
posed framework is a joint acoustic-lexical model exploiting the self-
supervised learning paradigm. Using a small subset of languages, our
results suggest the efficacy of such model to predict utterance-level
and overall WER for the test sets. When compared with monolin-
gual models, the multilingual framework performs comparably for
the distant languages (e.g., Arabic) while boosting the performance
of the close languages (e.g., Enmono: 0.62 PCC vs Enmulti: 0.66
PCC). The current study can be used as a proof of concept to utilize
the representation models to design such a predictor for an ASR. We
exploit pretrained models as a feature-extractor for computational
feasibility. In the future, we will focus on improving the performance
by handling the imbalanced target distribution, with improved neural
architecture and cover more languages.

2A higher RMSE and overall WER difference is seen for other datasets
while using natural distribution.
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