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ABSTRACT

This paper studies audio-visual noise suppression for egocentric
videos – where the speaker is not captured in the video. Instead, po-
tential noise sources are visible on screen with the camera emulating
the off-screen speaker’s view of the outside world. This setting is
different from prior work in audio-visual speech enhancement that
relies on lip and facial visuals. In this paper, we first demonstrate
that egocentric visual information is helpful for noise suppression.
We compare object recognition and action classification-based vi-
sual feature extractors and investigate methods to align audio and
visual representations. Then, we examine different fusion strategies
for the aligned features, and locations within the noise suppression
model to incorporate visual information. Experiments demonstrate
that visual features are most helpful when used to generate additive
correction masks. Finally, in order to ensure that the visual features
are discriminative with respect to different noise types, we introduce
a multi-task learning framework that jointly optimizes audio-visual
noise suppression and video-based acoustic event detection. This
proposed multi-task framework outperforms the audio-only baseline
on all metrics, including a 0.16 PESQ improvement. Extensive ab-
lations reveal the improved performance of the proposed model with
multiple active distractors, overall noise types, and across different
SNRs.

Index Terms— noise suppression, multimodal, egocentric

1. INTRODUCTION

Speech extracted from the wild is rich in information content. How-
ever, such speech often contains noise, which decreases the its in-
telligibility. Noise suppression is the task of learning to produce
cleaner output speech from noisy input.

Noise suppression can benefit from additional information in the
form of visual representations [1,2] of the speaker and their environ-
ment [3] Prior work in audio-visual noise suppression has examined
visual information with on-screen speakers derived from videos [4]
and still images [5] of the speaker. These visuals capture the motion
of the speaker’s lips and other articulators, providing information on
what is spoken. Such visual information has also been used for re-
lated tasks like multi-source audio-visual separation [6,7], object de-
tection [8], and source localization [9]. However, such visuals (with
the target speaker on-screen) are challenging to capture in the wild.

Another source of visual information that could assist noise sup-
pression is visual cues from the surrounding environment. Such
a view of the world through the speaker’s eyes is termed ”egocen-
tric”. Egocentric visuals capture surrounding objects that may pro-
duce noise, but not the speaker’s visual attributes, i.e., the speaker
is off-screen. To the best of our knowledge, this setting is vastly
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different from previous work, which have relied on visual represen-
tations of the on-screen speaker for noise suppression. In order to
use egocentric visuals for noise suppression, we propose to extract
visual features that describe potential distractor sources on screen as
it is known that an explicit characterization of the noise source aids
noise suppression performance [10].

Visual features that represent potential distractor sources may be
obtained using object detection models which provide information
on the stationary objects, or using video classification models which
use longer temporal context to identify on-screen actions. How-
ever, such representations may not sufficiently represent the distrac-
tor sources. When multiple objects or events are visible on screen,
some or none of them may correspond to acoustic events and noise
sources. This motivates us to provide additional supervision over the
visual features to make them relevant to the acoustic events in the
scene. Therefore, the problem of egocentric audio-visual noise sup-
pression is formulated using Multi-Task Learning (MTL) to jointly
optimize visual acoustic event detection and noise suppression.

Audio and visual features have different rates of information
change, and are hence unaligned. In order to align the modalities, we
compare two strategies- upsampling and temporal attention. Once
the modalities have been aligned, the visual features can be incorpo-
rated at different locations within the noise-suppression model; and
based on this location, we investigate input, intermediate, late, and
mask fusion. Finally, in order to fuse the audio and visual represen-
tations - we compare addition and concatenation.

In summary, this paper makes the following contributions:
1. We propose a method to utilize egocentric visual information

to enhance off-screen target speech, and compare visual rep-
resentations from pretrained models that distinguish potential
distractor sources.

2. In order to produce visual representations that can distin-
guish between different distractors, we introduce a novel
vision based acoustic event detection criterion, which pro-
duces better enhancement than pre-trained object or action
classifiers.

3. We compare temporal attention and upsampling to align the
audio and visual feature sequences, and explore addition and
concatenation methods to fuse the aligned representations
within multiple locations within the model, corresponding to
input, intermediate, late and mask fusion strategies.

2. PROPOSED APPROACH

Fig. 1 shows the proposed model architecture for audio-visual noise
suppression. The complex valued STFT of the noisy audio input is
passed through the Convolutional Recurrent Network (CRN) [11] to
obtain the complex STFT mask, which is then multiplied with the
input to generate the predicted clean output.
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Fig. 1: Model architecture of the multi-task audio-visual convolu-
tional recurrent network (CRN) which performs mask based fusion.
Markers A, B, C, and D (in black) indicate locations for audio-visual
fusion corresponding to input, intermediate, late and output fusion.

The raw video is passed through a visual feature extractor that
either extracts per-frame or per-video visual representations. The
video features thus obtained are passed through recurrent layers to
utilize temporal dependencies. Audio feature maps from the four
marked locations (A), (B), (C), or (D) can be used for multimodal
alignment and fusion, and the output of the fusion module is then
used as input to the next CRN layer. The multimodal alignment
module then either performs deterministic temporal upsampling or
uses attention to align the audio and visual feature sequences. Fi-
nally the multimodal fusion block uses addition or concatenation to
combine the audio and visual feature maps.

2.1. Convolutional Recurrent Network (CRN)

The CRN model comprises an encoder, a recurrent processor, and a
decoder, and has a U-Net structure that enables feature sharing be-
tween the encoder and decoder at various resolutions for efficient
optimization. The encoder consists of 5 encoder blocks- each of
which includes a 2-D convolution layer, a 2-D batch normalization
layer [12], and the Gated Linear Unit (GLU) [13] activation. The
convolution layers have kernel sizes of (2, 4) and strides of (1, 2).
The first convolution maps the 2 input channels representing the real
and imaginary parts of the input spectrogram to 16 output channels,
and the subsequent convolutions produce 32, 64, 76, and 98 output
channels respectively. The recurrent processor has four bidirectional
Long Short-Term Memory (bLSTM) layers with input and hidden
size 294 to capture long-range dependencies. The output is down-
sized to 294, and reshaped to 4 dimensions before being processed
by the decoder.

The decoder consists of 5 decoder blocks - each comprising con-
catenation layers that fuse the encoder outputs, batch normalization
layers, and gated transpose convolution layers. The concatenation
layer takes as input the decoder activation for block l and the cor-
responding output activation for the 5 − l encoder block and stacks
them along the channel dimension to form an input with twice the
number of input channels. The transpose convolution layers have the
same kernel size and stride as the convolution layers in the encoder
and produce outputs with 76, 64, 32, 16 and 2 channels respectively.
The final output of the decoder with 2 channels is passed through a
sigmoid mask layer.

2.2. Visual Feature Extractor

Visual features that represent objects and actions within the video are
likely to represent potential noise sources. In this paper, we compare

object recognition based visual features with video action classifica-
tion based features for audio-visual noise suppression. Object recog-
nition based features derived from Efficientnet-B0 [14] model
pre-trained on Imagenet [15] to represent the distractor sources. Fur-
ther, video classification features are useful indicators of actions
such as ”door open/close” and ”playing the guitar” that correspond
to noise sources. Action recognition models trained on KINETICS-
400 [16] are used to extract such representations with pre-trained
R2+1D [17] model.

2.3. Multimodal Processor

Multimodal Alignment:The audio and visual feature maps have dif-
ferent temporal resolutions as the audio information changes faster
than the video. Therefore, it is necessary to obtain a temporal align-
ment between audio and video. In this paper, we compare upsam-
pling and temporal attention for multimodal alignment. Upsampling
is a deterministic mechanism that is favoured when the audio and
video sequences are monotonic with respect to each other, i.e., when
the first video frame corresponds to the first few audio frames and so
on. Multi-head temporal attention is learned and can be used to align
the video and audio sequences even when the montonicity criterion
is not satisfied.
Multimodal Fusion: Given audio and video feature maps with the
same temporal resolution, in this paper we compare different loca-
tions within the model to determine the optimal location for audio-
visual fusion. Within the audio-visual model architecture shown in
Fig. 1, letters in black demonstrate potential locations for the visual
features. They can be placed in location (A) for input fusion, (B) for
intermediate fusion, (C) for late fusion, or (D) for mask fusion.

Based on the location of fusion, the audio and visual feature
maps are extracted and then combined. In this paper, two meth-
ods are considered for fusion- addition and concatenation. First, the
aligned visual feature map is projected such that it has the same fea-
ture dimension as the audio feature map, and one single channel. If
addition is the fusion method, both the visual feature map is passed
through a convolution layer to have the same number of channels as
the audio feature map. Then the resulting maps are added to produce
the output. For concatenative fusion, the visual feature map with a
single channel is concatenated with the audio feature map along the
channel dimension, and the resulting map is transformed to the shape
of the input audio feature map using a 2D convolution.

2.4. Optimization Criterion

Our noise suppression models are trained using a combination of
several losses. Let s̃ be the enhanced 16 kHz signal in the time do-
main. Let S denote the STFT magnitude of clean speech s. The re-
construction loss includes an L1 loss in the time domain, a weighted
STFT loss (W-STFT) [18], and Scale Invariant Signal Distortion Ra-
tio (SI-SDR) loss [19]. The total loss Lns is computed as a weighted
sum of these components in Eq. (1), where weights λ1 = 1, λ2 =
22.62 and λ3 = 0.001 are set empirically.

Lns = λ1||s− s̃||1 + λ2LWSTFT(S, S̃) + λ3LSI-SDR(s, s̃). (1)

Eq. (2) formulates the weighted STFT loss, where higher
weights are used to emphasize the high frequency regions. We
split the frequency bins into 4 sub-bands and assign weights (0.1,
1.0, 1.5, 1.5) to each sub-band empirically.

LWSTFT =

4∑
k=1

wk||Sk − S̃k||1. (2)



Table 1: Speech Enhancement evaluation metrics for audio and
audio-visual models on the Audioset evaluation set.

Model PESQ STOI VISQOL-A VISQOL-S
Noisy Speech 1.2 0.75 2.66 1.97
Audio-only 2.44 0.89 3.96 2.97
+ Visual (Obj) 2.56 0.92 4.08 3.23
+ MTL 2.60 0.92 4.45 2.95
+ Visual (Vid) 2.55 0.921 4.42 2.88
+ MTL 2.57 0.923 4.45 2.95

Table 2: PESQ scores of the proposed audio and audio-visual mod-
els across different evaluation SNRs.

Model - 20 dB -10 dB 0 dB 10 dB 20 dB
Audio 1.31 1.67 2.44 3.19 3.68
AV (Obj) 1.33 1.75 2.55 3.28 3.75
+ MTL 1.37 1.78 2.60 3.32 3.78

SI-SDR is commonly used as a loss function in the time-domain.
LSI-SDR is defined as:

LSI-SDR = 10 log10
||αs||2

||αs− s̃||2

where α = arg
α

min ||αs− s̃||2.
(3)

2.5. Multi-Task Learning: Supervision over Visual Features

Though pre-trained object and action features capture useful visual
information about the distractor sources, they generate noisy repre-
sentations when there are multiple objects and actions in the scene,
some of which may not be linked to the audio event. Therefore, it
would be helpful to obtain discriminative visual features that recog-
nize different acoustic events. We propose to optimize the extracted
visual features by using visual Acoustic Event Detection (AED) as
an auxiliary criterion over the outputs of the bLSTM in Fig. 1 during
training. A linear projection is used to map the pooled features to
the label dimension, and binary cross-entropy loss is computed over
each of the labels.

Eq. (4) shows the proposed Multi-Task Learning (MTL) frame-
work that optimizes audio-visual noise suppression with lossLns(see
Eq. (1)) and a multilabel binary cross entropy loss Laed for visual
acoustic event classification. The task weights α1 = 1, α2 = 50 are
set empirically.

Ltotal = α1Lns + α2Laed. (4)

3. EXPERIMENTS
3.1. Dataset and Input Features

Audioset [20] is a large scale dataset of videos extracted from
YouTube which are human labelled for acoustic event detection. We
select portions of the Audioset data that likely do not contain speech
as a distractor for our experiments based on manual inspection of
the acoustic event labels. We generate data for our experiments
by using audio-visual distractor signals from Audioset, and clean
off-screen target speech from the DNS Challenge data [21]. The
DNS-challenge training data is randomly partitioned into training
and evaluation data. The distractor audio and target clean off-screen
speech are combined after volume normalization by sampling a

Fig. 2: PESQ improvements for different fusion methods(concat,
add), alignment methods (upsampling, attention), and locations (in-
put fusion, intermediate fusion, late fusion and mask fusion)

Fig. 3: PESQ improvement across the Audio, Audio-visual and
Multi-task Audio-visual models for different number of acoustic
event labels on the test data. The proportion of the number of
sources with a given number of labels is shown in green. The relative
improvements in PESQ between Audio and Audio-visual (yellow),
Audio-Visual (MTL) and Audio (red), and Audio-visual (MTL) and
Audio-visual are also marked plotted.

mixing Signal-to-Noise Ratio (SNR) s ∼ N(0, 5). The test set is
created using the same mechanism by mixing evaluation set videos
from Audioset with our evaluation partition of the DNS challenge
training data.

3.2. Evaluation Metrics

Our models are evaluated using both objective and subjective speech
quality metrics. For objective evaluation, we use Perceptual Eval-
uation of Speech Quality (PESQ)1 [22], Short-Time Objective In-
teligibility (STOI) [23], and Virtual Speech Quality Objective Lis-
tener (VISQOL) [24]. We also obtain Deep Noise Suppression Mean
Opinion Score (DNSMOS) [25] for the best model as a proxy for
subjective human evaluation.

3.3. Audio-Visual Models

The audio only CRN model is trained first and used to initialize the
parameters of the audio-visual model. This ensures that the audio-
visual model does not learn to rely exclusively on the visual repre-
sentations, leading to noisy predictions. The visual feature extrac-

1https://pypi.org/project/pesq/



tors are first frozen, and then fine-tuned so that they do not lose the
impact of pre-training. The audio-visual model is trained with dif-
ferent alignment, fusion and location strategies. Alignment methods
are compared for mask fusion with concatenation, and we compare
addition and concatenation for mask fusion with upsampling. Four
fusion locations are compared with upsampling based alignment and
concatenative fusion corresponding to input, intermediate, late and
mask fusion.

3.4. Experimental Results

Table 1 reports the performance of our models. The audio-visual
noise suppression models that use object recognition and video clas-
sification features improves performance over the audio baseline on
all metrics. By employing the proposed multi-task learning frame-
work for visual supervision, we find that enhancement performance
improves further, and obtains the best PESQ score of 2.60. We find
that object and video-based features attain similar classification per-
formance, with higher gains from object-based multi-task training.
This is because most acoustic events labeled correspond to objects
in the scene rather than actions. The multi-task framework improves
over the audio-visual model in two cases- (a) when there are multi-
ple distractor sources in the recording, and (b) when the distractor
source has a distinct visual representation.

Fig. 2 highlights PESQ performance of our audio-visual mod-
els across alignment methods, fusion methods, and fusion locations.
It is observed that attention and upsampling have comparable per-
formance, as do addition and concatenation. This can be useful to
reduce the number of model parameters since addition and upsam-
pling involve no additional parameters. Of the different locations
for fusion, late fusion and mask fusion, where the features are in-
tegrated with the output of the recurrent processor or the complex
mask respectively, perform the best. The observation that late fusion
outperforms input fusion is similar to those made for acoustic event
detection with Audioset [26]. Our best model uses addition-based
late fusion with deterministic upsampling. This implies that the vi-
sual information can be used to generate a corrective mask that mit-
igates errors within the audio-only mask, thereby improving speech
enhancement performance.

Table 3 demonstrates that the proposed multi-task approach im-
proves DNSMOS by 0.07 absolute overall. Further, on a AB test
conducted using 20 test samples and 10 respondents, 48% of the lis-
teners preferred the multi-task model, while 46% of listeners had no
preference and 6% of listeners preferred the audio only model.

Table 3: DNSMOS evaluation of noise suppression models

Model OVL SIG BAK
Audio 3.22 3.48 4.12
Audio-visual (Obj) 3.27 3.52 4.12
+ MTL 3.29 3.53 4.14

3.5. Ablation Study

SNR: Table 2 describes the PESQ improvements obtained by using
visual features across different SNRs. We note that the proposed
visual features produce improvements across all SNRs.
Noise-type Analysis: Audioset has human annotated acoustic event
labels, which correspond to different types and sources of noise. The
difference in PESQ scores between the baseline audio model and
the proposed Audio-visual(MTL) model is computed, and the five
classes with highest and lowest changes are shown in Fig. 4. First,

Fig. 4: Plot showing noise label classes with 5 highest and 5 low-
est changes in PESQ score between audio and audio-visual (MTL)
models

we observe that the PESQ score improves across all noise types since
the lowest change is positive. The improvements are highest over
classes with distinct visual representations, i.e. “strum” sees higher
gains compares to “chatter”.
Number of noise sources: The number of such acoustic event labels
from Audioset could also serve as a proxy for the number of distinct
distractor sources. Fig. 3 plots the improvements in PESQ for differ-
ent number of ground-truth Audioset labels in the distractor source.
The data distribution (shown in green) demonstrates that a large pro-
portion of the data has fewer than 5 labels. The audio-visual baseline
model (yellow) seems to improve over the audio baseline for a sin-
gle acoustic event, but degrades with more events. This is because
of multiple reasons: (a) All the visual sources may not be on screen,
or (b) Visual feature extractors may identify representations of other
objects or actions that do not produce sounds. The difference be-
tween the proposed audio-visual (MTL) model and the audio-visual
baseline (shown in blue) demonstrates the importance of visual su-
pervision for multiple noise labels in the data. In conclusion, the
proposed audio-visual (MTL) model improves over the audio base-
line for single and multiple noise sources.

4. CONCLUSION

To the best of our knowledge, this paper is among the first work for
egocentric audio-visual noise suppression. We consider the setting
where the target speaker is off-screen with on-screen video compris-
ing information regarding noise. We have introduced methods to
efficiently and accurately use the visual information. Specifically,
we have investigated how to extract useful visual features and how
to fuse them with the audio information.

We evaluated different approaches for multimodal alignment
and fusion, with additive mask fusion emerging as the best per-
forming solution. To generate discriminative visual representations,
we proposed a multi-task training framework that jointly optimizes
audio-visual noise suppression and visual acoustic event detection.
This multi-task training approach is shown to outperform the meth-
ods which directly uses object classification or action classification
features as the input of the visual branch. This proposed frame-
work resulted in 0.16 absolute PESQ improvement over a strong
audio baseline. The proposed multi-task approach obtains improve-
ments across all metrics, different SNR conditions and noise types;
and also improves performance on audio with multiple distractor
sources.
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