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ABSTRACT

Semi-supervised anomaly detection (SSAD) is a task where normal

data and a limited number of anomalous data are available for train-

ing. In practical situations, SSAD methods suffer adapting to do-

main shifts, since anomalous data are unlikely to be available for

the target domain in the training phase. To solve this problem, we

propose a domain adaptation method for SSAD where no anoma-

lous data are available for the target domain. First, we introduce

a domain-adversarial network to a variational auto-encoder-based

SSAD model to obtain domain-invariant latent variables. Since the

decoder cannot reconstruct the original data solely from domain-

invariant latent variables, we conditioned the decoder on the domain

label. To compensate for the missing anomalous data of the target

domain, we introduce an importance sampling-based weighted loss

function that approximates the ideal loss function. Experimental re-

sults indicate that the proposed method helps adapt SSAD models

to the target domain when no anomalous data are available for the

target domain.

Index Terms— Anomaly detection, domain adaptation, impor-

tance weighting

1. INTRODUCTION

Anomaly detection is an essential technology for various business

fields such as factory automation [1, 2] and automated surveil-

lance [3]. In these fields, this technology is useful for automatically

detecting factory equipment failures or occurrences of unusual

events (e.g., screams or fights). Typically, anomaly detection is

solved as an unsupervised task, where only normal data are avail-

able for training. This is because anomalous data occur in rare

situations and are highly diverse, making them difficult to collect.

In this unsupervised setting, well-established methods exist such as

methods based on support vector machines [4], auto-encoders [5],

or variational auto-encoders (VAEs) [6].

In some cases, a limited amount of anomalous data may be avail-

able for the training data [7]. For example, the target equipment may

accidentally break, or an unusual event may occur during data collec-

tion. In this situation, we can use the available anomalous data to en-

hance anomaly detection performance. A notable aspect of this situ-

ation is that the collected anomalous data does not necessarily cover

all the possible anomalous data, owing to its diversity. For exam-

ple, factory equipment can fail in many different ways, where each

causes a different kind of anomalous data. Here, we are required

to detect two types of anomalous data: Anomalous data covered by

the collected ones (seen anomalous data) and those not covered by

them (unseen anomalous data). Therefore, although anomaly detec-

tion aims to classify each data as normal or anomalous, it cannot be

solved as a standard binary classification task. In this paper, we will

call this task the semi-supervised anomaly detection (SSAD) task

and focus on it. SSAD aims to detect seen anomalous data better

than unsupervised anomaly detection (UAD) methods while main-

taining the detection performance against unseen anomalous data.

SSAD methods based on VAEs [8, 9], regression models [10], or

classifiers [11] have been proposed in the literature. A similar task

was also considered in [12, 13], where they assumed that abundant

unlabeled data was also available in addition to the labeled normal

and anomalous data.

In practical situations, the distribution of the data to perform

anomaly detection, the target domain data distribution, can be dif-

ferent from that of the initially collected training data, the source

domain data distribution. For instance, the difference in measure-

ment conditions or states of the target equipment may cause this dif-

ference. In such situations, we must adapt the trained model to the

target domain. If both normal and anomalous data are available for

the target domain, this can be carried out easily by typical domain

adaptation methods [14, 15] or by retraining the model. However,

anomalous data for the target domain are often unavailable since

they rarely occur. In this case, adaptations of SSAD models will

fail since only normal data will be available for the target domain.

In this paper, we propose a domain adaptation method for

SSAD, where normal data and seen anomalous data are available for

the source domain, but only normal data is available for the target

domain. Under this situation, we aim to detect seen anomalous

data in the target domain more accurately than UAD methods while

maintaining the detection performance against unseen anomalous

data. First, we add a domain-adversarial network to the VAE-based

SSAD model to obtain domain-invariant latent variables. Since the

decoder of the VAE cannot reconstruct the original data solely from

domain-invariant latent variables, we condition the decoder with

the domain label. To compensate for the missing target anomalous

data, we approximate the ideal loss function with an importance

sampling-based weighted loss function [16] for the available data.

By this method, the trained model can detect seen anomalous data

better than UAD models even when those data are unavailable for

the target domain.

2. RELATED WORK

Several works on domain adaptation for anomaly detection exist in

the literature. For example, in [17], Normalizing Flow was unified

with Adaptive Batch-Normalization to conduct domain adaptation

of an UAD model. Domain adaptation for SSAD was also con-

sidered in [11], where the SSAD model was composed of a super-

vised anomaly detection model and an UAD model. However, in this

work, only the UAD model was adapted to the target domain. There-

fore, the adaptation does not help to detect seen anomalous data in

the target domain.

If we look at tasks other than anomaly detection, domain adap-
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Table 1: Data availability in our problem setting.

Normal Seen anomaly Unseen anomaly

Source Yes Yes No

Target Yes No No

tation has been widely investigated for classification tasks. Typi-

cally, domain adaptation methods aim to match the distributions be-

tween the embedded features of the source data and that of the target

data [14,18]. Complicated tasks have also been tackled, such as par-

tial domain adaptation [19, 20]. Here, a specific subset of classes

will be absent in the target domain data, which is a similar prob-

lem setting to ours. However, in this task, the missing classes will

not appear in the test data and therefore do not need to be correctly

discriminated. In comparison, in our problem setting, data from the

missing class, which is the seen anomalous data, will appear in the

test data and needs to be correctly detected. The closest task is tack-

led in [16], which assumes that several classes are missing in the

target training data, while all classes appear in the test data. Com-

pared to this task, we assume that data missing from both the source

and target domain, the unseen anomalous data, will also appear in

the test data.

3. PROBLEM STATEMENT

In this paper, we tackle the problem of domain adaptation for SSAD.

Table. 1 shows what types of data are available for the training phase.

For the source domain, normal data and some anomalous data are

available. We will call the available anomalous data the ”seen”

anomalous data. For the target domain, only normal data is avail-

able. Thus, the overall training dataset is summarized as

D = {(x, c, d) | x ∈ R
s, (c, d) ∈ {(N, S), (A, S), (N,T)}} , (1)

where x ∈ Rs is the input data, c denotes whether the input data

belongs to the normal data (c = N) or the seen anomalous data (c =
A), and d denotes the domain of the input data; d = S for source

domain data and d = T for target domain data. We also assume that

anomalous data that are different from the seen anomalous data also

exist in the test data. We will call this the ”unseen” anomalous data.

In this paper, we aim to create an anomaly detection model that

can detect seen anomalous data more accurately than UAD meth-

ods while maintaining the detection performance against unseen

anomalous data in the target domain. Note that no seen anomalous

data is available for the target domain. Hence, we cannot train an

SSAD model straightforwardly. Moreover, adapting a model that

was trained in the source domain to the target domain by standard

domain adaptation techniques will fail.

4. PROPOSED METHOD

4.1. Two-class VAE for SSAD

As the baseline method, we introduce the SSAD framework pro-

posed in [8, 9]. Here, a VAE is trained with two prior distributions

p (z | c = N) and p (z | c = A) of the latent variable z. Each prior

distribution corresponds to the distribution of the normal and anoma-

lous data. By setting the two prior distributions far from each other,

we can easily discriminate seen anomalous data from normal data by

observing the latent variable. We will call this model the two-class

VAE (2C-VAE). The loss function of a 2C-VAE is defined as

lVAE (x, c; θEnc,θDec) = EqθEnc
(z|x) [log pθDec

(x | z)]

− KL [qθEnc
(z | x) ‖p (z | c)] , (2)

Domain 
classifier

Encoder Decoder

Fig. 1: Model architecture of the proposed method

which is the evidence lower bound (ELBO) of log p (x). Here,

qθEnc
(z|x) and pθDec

(x | z) are constructed by neural networks.

qθEnc
(z|x) is constructed by an encoder fEnc. This encoder out-

puts the parameters u of a probabilistic density function pEnc(·;u),
which will be used as qθEnc

(z|x), as

u = fEnc (x;θEnc) , (3)

qθEnc
(z | x) = pEnc (z;u) . (4)

For pEnc, Gaussian distributions [8] or von Mises-Fishier (vMF) dis-

tributions [9] are used. pθDec
(x | z) is constructed by a decoder

fDec. This decoder typically outputs the expected value of x, and a

Gaussian distribution around it is used to form pθDec
(x | z), as

x̃ = fDec (z;θDec) , (5)

pθDec
(x | z) = N (x; x̃, I) . (6)

Thus, log pθDec
(x | z) can be calculated as the mean squared error

between x̃ and x.

4.2. Domain-adversarial network for 2C-VAE

To adapt the 2C-VAE to the target domain, we introduce a domain

classifier pθDom
(d | z) to construct an adversarial network [14].

The domain classification loss is written as

ldom (x, d;θEnc,θDom) = EqθEnc
(z|x) [log pθDom

(d | z)] . (7)

Through adversarial training of (7), we aim to match the distributions

between z of the source data and that of the target data, i.e., we aim

to obtain a domain-invariant latent variable. However, this aim con-

tradicts the optimization of (2) since the decoder cannot reconstruct

the original data without any domain information. To overcome this

problem, we input the domain label to the decoder in addition to the

latent variable. By using the domain label, the decoder can estimate

the original data even when z becomes domain-invariant.

By combining (7) with (2), the optimization problem for training

the 2C-VAE is written as

min
θEnc,θDec

max
θDom

E [L (x, c, d;θEnc,θDec, θDom)] , (8)

L (x, c, d;θEnc,θDec,θDom)

:= −lVAE (x, c, d;θEnc,θDec) + λdomldom (x, d;θEnc,θDom) ,
(9)

where ldom > 0 is a hyperparameter. Note that we added the domain

label d to lVAE since it is now input to the decoder. Here, θEnc and

θDec are trained to minimize L, whereas θDom is trained to max-

imize L. Thus, θDom is trained to correctly classify the domain

from z, while θEnc is trained to fool the domain classifier. By this,

the model will obtain a latent variable that is domain-invariant. We

summarize the model architecture in Fig. 1. From here, we will omit

writing down the parameters in the loss function when it is obvious.

When training the model with (9), the absence of seen anoma-

lous data in the target domain causes a problem. In 4.3 and 4.4, we

will describe this problem and introduce an importance sampling-

based method [16] to overcome it.



4.3. Approximation of 2C-VAE loss

The expected value of lVAE can be decomposed as

E [lVAE (x, c, d;θEnc, θDec)]

=

∫
lVAE (x, c = N, d = S) p (x, c = N, d = S) dx

+

∫
lVAE (x, c = A, d = S) p (x, c = A, d = S) dx

+

∫
lVAE (x, c = N, d = T) p (x, c = N, d = T) dx

+

∫
lVAE (x, c = A, d = T) p (x, c = A, d = T) dx. (10)

Since we have no anomalous samples from the target domain, data

sampled from p (x, c = A, d = T) are unavailable. Thus, the fourth

term cannot be calculated from the available data. This means that

if we optimize l2CV AE (x, c, d) using the available data, the latent

variable of the seen anomalous data from the target domain will not

be restricted to the prior distribution p (z|c = A). Hence, detecting

seen anomalous data from the target domain will fail.

To overcome this problem, we rewrite p (x, c = A, d = T) as

p (x, c = A, d = T) = p (x, c = A, d = S)
p (x, c = A, d = T)

p (x, c = A, d = S)

= p (x, c = A, d = S)
p (d = T | x)

p (d = S | x)
. (11)

Here, we assumed p (d | x, c = A) = p (d | x, c = N) = p (d | x).
This can be interpreted as the covariate shift condition under class

shifts instead of the standard covariate shift condition under domain

shifts. This is a reasonable assumption when the domain of the data

can be estimated only from the data without knowing whether it is

normal or anomalous.

Now, we can use the source anomalous data with a weight ex-

pressed in the second term of (11) to calculate the fourth term of (10).

Since we are training the domain classifier along with the 2C-VAE,

the second term of (11) can be estimated as

wvae :=
p (d = T | x)

p (d = S | x)
=

∫
qθEnc

(z | x) pθDom
(d = T | z) dz∫

qθEnc
(z | x) pθDom

(d = S | z) dz
.

(12)

Here, we assumed p (d | z,x) = p (d | z), which is an appro-

priate assumption since the trained domain classifier can often esti-

mate the domain label accurately only from z in practical cases. In

addition to the reformulation described above, we set p(d = S) =
p(d = T) = 0.5 and p (c | d = T) = p (c | d = S) := pc, where

p (c | d = S) is calculated from the source data. Finally, (10) can be

reformulated as

E [lVAE (x, c;θEnc,θDec)]

=
pN

2

∫
lVAE (x, c = N, d = S) p (x | c = N, d = S) dx

+
pA

2

∫
(lVAE (x, c = A, d = S)

+ wvae lVAE (x, c = A, d = T)) p (x | c = A, d = S) dx

+
pN

2

∫
lVAE (x, c = N, d = T) p (x | c = N, d = T) dx. (13)

Here, all terms can be calculated by the available data. Note that

in the second term, the data x is sampled from the source anoma-

lous data, but in lVAE (x, c = A, d = T) the domain label is d = T.

Table 2: Experimental conditions

Normal Seen anomaly Unseen anomaly

Case 1 1, 2, 3 4, 5, 6 7, 8, 9

Case 2 4, 5, 6 7, 8, 9 1, 2, 3

Case 3 7, 8, 9 1, 2, 3 4, 5, 6

Thus, we input d = T to the decoder to calculate this term, although

the data x will be sampled from the source domain. As a result, (13)

applies large weights to data from missing classes if it is regarded to

be similar to target domain data. This is different from partial do-

main adaptation problems, where importance sampling was used to

apply small weights to data from missing classes [18].

4.4. Approximation of domain classification loss

(13) will be an accurate estimate of (10) if wvae is accurate. How-

ever, the domain classifier that calculates the components of wvae

also cannot be trained accurately because of the unavailable data. To

overcome this problem, we will also reformulate the domain clas-

sification loss. First, we rewrite p (x, c = A, d = T) in the same

procedure as in (11), as

p (x, c = A, d = T) = p (x, c = N, d = T)
p (x, c = A, d = T)

p (x, c = N, d = T)

= p (x, c = N, d = T)
p (c = A | x)

p (c = N | x)

:= p (x, c = N, d = T)wdom. (14)

Here, we assumed the covariate shift condition p (c|x, d = T) =
p (c|x, d = S) = p (c|x).

Unlike in [16], wdom cannot be calculated directly from the

model outputs since we do not explicitly classify the given sample

as normal or anomalous. However, by assuming p(x | c,z) = p(x |
z), the numerator and the denominator of wdom can be calculated as

p (c = A | x) =

∫
qθEnc

(z | x)
pAp (z | c = A)

p (z)
dz, (15)

p (c = N | x) =

∫
qθEnc

(z | x)
pNp (z | c = N)

p (z)
dz, (16)

p (z) = pN p (z | c = N) + pA p (z | c = A) . (17)

Finally, the domain classification loss can be reformulated as

E [ldom (x, d;θEnc,θDom)]

=
pN

2

∫
ldom (x, d = S) p (x | c = N, d = S) dx

+
pA

2

∫
ldom (x, d = S) p (x | c = A, d = S) dx

+
pN

2

∫
(1 + wdom) ldom (x, d = T) p (x | c = N, d = T) dx.

(18)

Now, the overall optimization problem for domain adaptation is

formulated by substituting (13) and (18) to (8).

5. EXPERIMENTS

5.1. Experimental conditions

To investigate the effectiveness of the proposed method, we con-

ducted an SSAD experiment under domain shifts. We used two

datasets of handwritten digit images: MNIST [21] for the source



Table 3: AUC values for seen anomalous data (%)

Method Prop. w/ weights Prop. w/o weights 2C-vMF-VAE-da 2C-vMF-VAE VAE

Value used for anomaly score RL KL ELBO RL KL ELBO RL KL ELBO RL KL ELBO RL

Case 1 88.2 92.9 97.4 92.5 90.1 96.8 80.7 92.2 94.6 79.5 90.8 95.3 95.9

Case 2 79.3 75.6 88.6 84.9 71.7 86.9 73.3 74.9 87.0 77.8 76.5 87.3 85.5

Case 3 85.2 77.7 92.7 86.8 70.5 91.8 79.7 67.7 88.4 79.8 69.0 90.5 82.3

Avg. 84.2 82.1 92.9 88.1 77.4 91.8 77.9 78.3 90.0 79.0 78.8 91.0 87.9

Table 4: AUC values for unseen anomalous data (%)

Method Prop. w/ weights Prop. w/o weights 2C-vMF-VAE-da 2C-vMF-VAE VAE

Value used for anomaly score RL KL ELBO RL KL ELBO RL KL ELBO RL KL ELBO RL

Case 1 83.7 72.7 89.7 88.5 70.4 90.2 77.4 79.7 86.0 77.5 77.8 86.5 90.6

Case 2 80.0 78.2 89.1 87.8 76.3 90.1 76.6 84.1 87.6 79.8 85.9 89.0 88.8

Case 3 86.4 60.4 86.8 86.8 60.9 87.1 81.9 58.5 83.9 84.8 60.6 85.5 90.0

Avg. 83.4 70.4 88.5 87.7 69.2 89.1 78.6 74.1 85.8 80.7 74.8 87.0 89.8

domain and rotated MNIST [22] for the target domain. The ro-

tated MNIST is the MNIST dataset rotated for 45 degrees. Similarly

to [9], we divided the digits into three classes to create an SSAD

task: Normal, seen anomaly, and unseen anomaly. We examined

three cases summarized in Table 2. For training, we assumed that

the normal and seen anomalous data are available for the source do-

main and that only normal data are available for the target domain.

Here, the proposed method aims to detect seen anomalous data in

the target domain more accurately than UAD methods while main-

taining the detection performance against unseen anomalous data.

For the original model of the proposed method (Prop. w/

weights), we used the two-class vMF-VAE [9]. As explained in

Sect. 4, we added a domain classifier to this original model and

used the domain label as an additional input of the decoder. To

evaluate the effectiveness of importance weighting, we also con-

ducted the proposed method with the importance weights set to 0,

i.e., wvae = wdom = 0 (Prop. w/o weights). For the conventional

method, we evaluated the VAE-based UAD method (VAE) and

the original 2C-vMF-VAE-based SSAD method (2C-vMF-VAE).

We trained VAE with the normal data from the target domain and

2C-vMF-VAE with all the available data, i.e., the normal and seen

anomalous data of the source domain and the normal data of the

target domain. We also evaluated a method where a standard do-

main adaptation technique, DANN [14] was integrated into the

original SSAD method (2C-vMF-VAE-da). Here, we simply intro-

duced a domain classifier to the 2C-vMF-VAE model and conducted

domain-adversarial learning. For VAE, we used the reconstruction

loss (RL) as the anomaly score. For other methods, we used the RL,

the KL divergence loss from p(z | c = N) (KL), and the ELBO

as the anomaly score. For the encoder and decoder of each model,

we used a single hidden linear layer with 50 units. For the domain

classifier, we also used a single hidden linear layer with 50 units.

We trained all models by Adam [23]. VAE was trained for 200
epochs with the learning rate set to 0.01. All the other models were

trained for 500 epochs with the learning rate set to 0.0001. For mod-

els that require a domain classifier, we set λdom = 0.01. For the

proposed method, we regularized the values of wdom and wvae to be

w̃ = 1/2min{w, 2}, where w ∈ {wdom, wvae}. This was neces-

sary since the values could be unstable at the early stage of training.

5.2. Results

We compared the area under the receiver operating characteristic

curve (AUC) scores for anomaly detection against the target domain

data. Here, the scores were calculated separately for seen anomalous

data and unseen anomalous data.

Table 3 shows the AUC values of detecting seen anomalous data

in the target domain. For all methods except VAE, using ELBO as

the anomaly score achieved higher AUC values than RL or KL. A

possible reason is because some seen anomalous samples in the tar-

get domain were relatively similar to that in the source domain, while

others were not. In this case, samples similar to the source domain

samples can be detected by KL, while other samples can be detected

by RL. Therefore, both types of anomalous samples can be detected

by combining the two scores into ELBO, which achieves the best

performance. Because of this, we will mainly focus on the AUC

values achieved by ELBO. First, 2C-vMF-VAE-da showed lower

AUC values than 2C-vMF-VAE. This result implies that simply ap-

plying domain adaptation will completely fail when seen anomalous

data is unavailable for the target domain. In contrast, the proposed

method (Prop. w/ weights) outperformed all other methods, includ-

ing the VAE-based UAD method. This result suggests that the pro-

posed method successfully adapted the model to the target domain in

this situation. In addition, the fact that the proposed method showed

higher AUC values than the method without weights (Prop. w/o

weights) shows the effectiveness of the importance weights.

Table 4 shows the AUC values of detecting unseen anomalous

data in the target domain. Here, VAE showed the highest AUC val-

ues in two cases. Still, the difference between the AUC values of

VAE and those of the proposed method was relatively small. Also,

the proposed method even beat VAE in one case. Therefore, the pro-

posed method mostly maintained the detection performance against

unseen anomalous data.

Overall, the proposed method improved the detection perfor-

mance against seen anomalous data when it was unavailable in the

target domain while maintaining the detection performance against

unseen anomalous data compared to the unsupervised method. Thus,

the proposed method enabled domain adaptation of the SSAD model

when anomalous data was missing for the target domain.

6. CONCLUSION

We proposed a domain adaptation method for SSAD where no

anomalous data are available for the target domain. First, we con-

ducted domain-adversarial training on the VAE-based SSAD model

to obtain domain-invariant latent variables. Since the decoder can-

not reconstruct the original data solely from a domain-invariant

latent variable, we conditioned the decoder with the domain label.

To compensate for the unavailable data, we introduced an impor-

tance sampling-based weighted loss function that approximates the

ideal loss function. Experimental results showed that the proposed

method detects seen anomalous data better than UAD while main-

taining the detection performance against unseen anomalous data.

This result indicates that the proposed method helps adapt SSAD

models to the target domain when no anomalous data are available

for the target domain.



7. REFERENCES

[1] Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and N. Harada,

“Unsupervised detection of anomalous sound based on deep

learning and the Neyman-Pearson Lemma,” IEEE Trans. Au-

dio, Speech, Lang. Process., vol. 27, no. 1, pp. 212–224, 2019.

[2] K. Suefusa, T. Nishida, H. Purohit, R. Tanabe, T. Endo, and

Y. Kawaguchi, “Anomalous sound detection based on interpo-

lation deep neural network,” in Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Process. (ICASSP), May 2020, pp. 271–275.

[3] T. Xiao, C. Zhang, and H. Zha, “Learning to detect anomalies

in surveillance video,” IEEE Signal Process. Lett., vol. 22, no.

9, pp. 1477–1481, 2015.

[4] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,

and R. C. Williamson, “Estimating the support of a high-

dimensional distribution,” Neural computation, vol. 13, no.

7, pp. 1443–1471, 2001.

[5] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust

deep autoencoders,” in Proc. Int. Conf. Knowledge Discovery

Data Mining (KDD), Aug. 2017, pp. 665–674.

[6] J. An and S. Cho, “Variational autoencoder based anomaly

detection using reconstruction probability,” Special Lecture on

IE, vol. 2, no. 1, pp. 1–18, 2015.

[7] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld, “Toward su-

pervised anomaly detection,” J. Artif. Intell. Res., vol. 46, pp.

235–262, 2013.

[8] Y. Kawachi, Y. Koizumi, and N. Harada, “Complementary

set variational autoencoder for supervised anomaly detection,”

in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.

(ICASSP), Apr. 2018, pp. 2366–2370.

[9] Y. Kawachi, Y. Koizumi, S. Murata, and N. Harada, “A two-

class hyper-spherical autoencoder for supervised anomaly de-

tection,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-

cess. (ICASSP), May 2019, pp. 3047–3051.

[10] W. Liu, W. Luo, Z. Li, P. Zhao, and S. Gao, “Margin learning

embedded prediction for video anomaly detection with a few

anomalies.,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), Aug.

2019, pp. 3023–3030.

[11] C. Zhang, G. Li, L. Su, W. Zhang, and Q. Huang, “Video

anomaly detection using open data filter and domain adapta-

tion,” in Proc. IEEE Int. Conf. Visual Commun. Image Process.

(VCIP), Dec. 2020, pp. 395–398.

[12] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller,

K. Müller, and M. Kloft, “Deep semi-supervised anomaly de-

tection,” in Proc. Int. Conf. Learn. Representations (ICLR),

Apr. 2020, pp. 1–23.

[13] Y. Zhou, X. Song, Y. Zhang, F. Liu, C. Zhu, and L. Liu,

“Feature encoding with autoencoders for weakly supervised

anomaly detection,” IEEE Trans. Neural Networks Learn. Sys-

tems, vol. 33, no. 6, pp. 2454–2465, 2022.

[14] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,

F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-

adversarial training of neural networks,” J. Mach. Learn. Res.,

vol. 17, no. 1, pp. 2096–2030, 2016.

[15] Z. Yang, I. S. Bozchalooi, and E. Darve, “Anomaly detection

with domain adaptation,” arXiv preprint arXiv:2006.03689,

2020.

[16] M. Ishii, T. Takenouchi, and M. Sugiyama, “Partially zero-

shot domain adaptation from incomplete target data with miss-

ing classes,” in Proc. IEEE/CVF Winter Conf. Appl. Computer

Vision, 2020, pp. 3052–3060.

[17] M. Yamaguchi, Y. Koizumi, and N. Harada, “AdaFlow:

Domain-adaptive density estimator with application to

anomaly detection and unpaired cross-domain translation,”

in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.

(ICASSP), May 2019, pp. 3647–3651.

[18] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning trans-

ferable features with deep adaptation networks,” in Proc. Int.

Conf. Mach. Learn. (ICML). PMLR, Jul. 2015, pp. 97–105.

[19] J. Zhang, Z. Ding, W. Li, and P. Ogunbona, “Importance

weighted adversarial nets for partial domain adaptation,” in

Proc. IEEE Conf. Comput. Vision Pattern Recog. (CVPR), Jun.

2018, pp. 8156–8164.

[20] Z. Cao, L. Ma, M. Long, and J. Wang, “Partial adversarial

domain adaptation,” in Proc. European Conf. Computer Vision

(ECCV), Sept. 2018, pp. 135–150.

[21] Li L. Deng, “The mnist database of handwritten digit images

for machine learning research,” IEEE Signal Process. Mag.,

vol. 29, no. 6, pp. 141–142, 2012.

[22] M. Ghifary, W. B. Kleijn, M. Zhang, and D. Balduzzi, “Do-

main generalization for object recognition with multi-task au-

toencoders,” in Proc. IEEE Int. Conf. Computer Vision (ICCV),

Dec. 2015.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-

mization,” in Proc. Int. Conf. Learn. Representations (ICLR),

Apr. 2015.


	1  INTRODUCTION
	2  RELATED WORK
	3  PROBLEM STATEMENT
	4  PROPOSED METHOD
	4.1  Two-class VAE for SSAD
	4.2  Domain-adversarial network for 2C-VAE
	4.3  Approximation of 2C-VAE loss
	4.4  Approximation of domain classification loss

	5  EXPERIMENTS
	5.1  Experimental conditions
	5.2  Results

	6  CONCLUSION
	7  References

