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ABSTRACT

Whispering is a ubiquitous mode of communication that humans
use daily. Despite this, whispered speech has been poorly served
by existing speech technology due to a shortage of resources and
processing methodology. To remedy this, this paper provides a pro-
cessing framework that enables access to large and unique data of
high-quality whispered speech. We obtain the data from recordings
submitted to online platforms as part of the ASMR media-cultural
phenomenon. We describe our processing pipeline and a method for
improved whispered activity detection (WAD) in the ASMR data.
To efficiently obtain labelled, clean whispered speech, we comple-
ment the automatic WAD by using Edyson, a bulk audio-annotation
tool with human-in-the-loop. We also tackle a problem particular to
ASMR: separation of whisper from other acoustic triggers present
in the genre. We show that the proposed WAD and the efficient la-
belling allows to build extensively augmented data and train a clas-
sifier that extracts clean whisper segments from ASMR audio.

Our large and growing dataset enables whisper-capable, data-
driven speech technology and linguistic analysis. It also opens op-
portunities in e.g. HCI as a resource that may elicit emotional, psy-
chological and neuro-physiological responses in the listener.

Index Terms— Whispered speech, WAD, human-in-the-loop,
autonomous sensory meridian response

1. INTRODUCTION

Whispered speech is a very common mode of vocal communication
that comes naturally to humans. It is often used to reduce the audib-
ility of the speech signal [1] for privacy of information. Whisper is
also associated with situations of intimacy and speakers may use it to
elicit emotion and relaxation. The latter effect contributes to e.g. the
popularity of the so-called autonomous sensory meridian response
(ASMR) genre on streaming platforms.

Despite the communicative ubiquity and evocative power of
whispering, we do not see many implementations of whisper modes
in technology such as in voice assistants. Only recently have lead-
ing companies begun to provide voice assistants that recognise
whispered commands and provide responses in whisper [2, 3]. One
of the reasons being that whispered speech datasets are both rare and
small, limiting the development of data-driven methods for whisper
in speech technologies. Studies have also shown a related problem,
where existing systems with whispered interaction are judged as
“creepy” [4]. Owing to the lack of whispered speech resources, such
systems use phonated-to-whisper speech conversion which possibly
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contributes to the unconvincing signal generation. It is, therefore,
clear that there is a need for more whisper data sources and for
processing methods of whispered material.

In this work, we set out to make more whispered speech data
available to speech sciences and technology. We have noticed that
very large amounts of whisper data can be found in ASMR videos
uploaded to streaming platforms such as YouTube and Twitch.
ASMR (the name is pseudo-scientific') is an increasingly popular
phenomenon that uses auditory and visual cues to evoke sensory
and other effects in listeners. Whispered speech is a predominant
trigger of ASMR effects [5], but it is typically mixed with a variety
of other auditory triggers. To access the wealth of whisper embed-
ded in found ASMR data, it is necessary to separate the whispered
segments from the other signals typical for the genre. Considering
the amount of data available, this can become a tedious and time
consuming task if performed manually. At the same time, conven-
tional signal processing tools (e.g. denoising) that can speed up such
processing, work poorly on whispered speech due to the noise-like
nature of the signal [6].

In this work, we deliver a processing framework that provides
access to large amounts of whispered speech data included in ASMR
recordings.” We also separate the whispered signal from other sig-
nals typically present in the genre by leveraging acoustic features
found to be useful in WAD, and improve upon the WAD state-of-the-
art by including recurrent neural networks (RNNs) to model time de-
pendencies. To raise the efficiency of processing very large amounts
of data, we use Edyson [7], an application for semi-automatic la-
belling of audio data. Finally, we use data augmentation to fine-tune
a clean whisper speech detector (CWAD) for the specific speech
style and acoustic triggers present in a set of ASMR recordings. We
present this approach as a generalisable method to be used in similar
data scenarios.

2. BACKGROUND

Whispered speech is characterised by the lack of vibration of the
vocal folds. This causes an absence of fundamental frequency in the
speech signal, which, in turn, is visible as an energy reduction in the
lower frequencies of the spectrum [1, 8]. While other features like
the positions of the formants do not change much from whispered
to phonated speech, the lack of fo complicates the use of speech
processing methods adapted to phonated speech.

Currently available whispered speech resources usually com-
prise studio recordings of written sentences being whispered (e.g.
the wTIMIT, wMRT [9] and CHAINS [10] datasets). However, these
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datasets contain a relatively small amounts of whispered speech that
add up to a total of approx. 30 hours. Additionally, custom recorded
data of text prompts are likely to lack realistic prosody, and other lin-
guistic variability present in whispered speech outside the lab [11].

Rather than lab-recorded corpora, speech processing in general
has recently seen substantial advances from leveraging found data
resources instead [12, 13, 14]. Doing so sometimes necessitates
novel processing methods that combine signal processing, machine
learning, and human annotation in order to efficiently extract the por-
tions of interest from the found data, e.g. [15].

For these reasons, we propose to leverage ASMR recordings as
a source of whispered speech. ASMR is a phenomenon that has
grown in popularity on streaming platforms, e.g. there are currently
5.2 million ASMR videos on YouTube. The size of the data avail-
able for download is approx. hundreds of thousands of hours. By
recording whispered speech close to a high-sensitivity microphone,
ASMR performers aim to transmit physiological responses such as
frisson, particularly involving the pilomotor reflex (“goosebumps”),
as well as feelings of comfort, intimacy or relaxation [16, 17, 18,
19]. ASMR contains a wide variety of spontaneous whisper, usually
mixed with other triggers, for example, lip and tongue smacking and
clicking or rubbing the microphone with different materials, free-
styled for the purpose of evoking ASMR effects.

To excerpt clean speech from large datasets such as ASMR re-
cordings, voice activity detection (VAD) is typically used - a system
that recognises which parts of the recording are clean speech. How-
ever, off-the-shelf VAD is generally not applicable to whisper, due
to the noise-like quality of the signal. WAD is a special case of VAD
in which the system decides whether the signal contains whispered
speech. It is then possible to define two types of WAD: 1. Distin-
guishing between phonated and whispered speech, and 2. detecting
if the processed noisy signal contains whispered speech.

Whispered speech has reduced audibility in general, while whis-
per found in ASMR, typically recorded with high sensitivity micro-
phones, poses additional challenges to speech processing methods,
particularly whenever other triggers are present. In this work, we
propose a third mode of whisper activity detection: separating clean
whispered speech from speech affected by noise. We will refer to
this method as CWAD.

Different types of speech input call for different processing ap-
proaches. To process and analyse phonated vs. whispered speech
signal, it is important to distinguish between proper tools. Several
solutions derived from VAD using deep learning have been studied to
separate phonated from whispered speech [20, 21, 22] but the simil-
arity between whispered speech and non-speech noise, and its lower
SNR values produced by the lack of energy in the lower frequen-
cies, lower the usefulness of these methods for detecting whispers
within noise. Therefore, WAD systems that detect whispered speech
in noise usually rely on custom features tailored for this task. In par-
ticular, linear prediction features such as relative spectral filtering on
perceptual linear prediction (RASTA-PLP) [23, 24] and long-term
features like spectral modulation [25, 26] have been found useful for
distinguishing whispered speech from noise. Our work shows how a
combination of feature design and deep learning can improve on ex-
isting WAD methods. Additionally, these methods can also be tuned
for CWAD to label clean whisper data.

3. DATA PROCESSING FRAMEWORK

In this paper, we introduce a processing framework that allows sep-
arating clean whispered speech from noisy segments in unknown
data. The overall approach can be used to automatically label data
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Fig. 1: Proposed framework for CWAD. Blue boxes represent im-
plemented methods and red ones represent a specific type of data.

from unseen speech and noise data in many different scenarios, incl.
the use case of gathering whispered speech data from ASMR record-
ings. We also provide a pre-trained CWAD system that handles this
source of whisper data. The framework is illustrated in Fig. 1 and
detailed below:

1. Proposed WAD: We build an RNN classifier to detect the be-
ginning and end of any whispered speech segments, including those
embedded in noise, consisting of other acoustic triggers or any other
noise. We evaluate the performance of the proposed classifier com-
pared to baseline WAD solutions: a standard support vector machine
(SVM) RASTA-PLP [23, 24] and a multi-layer perceptron (MLP)
with RASTA-PLP features. We also compare to a state-of-the-art
VAD method [27, 28].

2. Noise extraction: We use the best-performing WAD method
to extract segments that are 100% noise (i.e. no whispered speech)
in the ASMR recordings and save them for data augmentation.

3. Labelling with Edyson: We use Edyson [7], a machine
learning-supported human-in-the-loop method, to semi-automatically
label clean whisper segments and those corrupted by other acoustic
triggers or other noise in ASMR data. The noise-removal in the
second step facilitates this process by having had removed non-
speech noise from the labelling task.

4. Data augmentation: Subsequently, we generate augmented
data combining clean whisper data from the CHAINS corpus and
ASMR, and we mix these with ASMR acoustic triggers saved in the
second step of the framework.

5. Proposed CWAD: Using the augmented data, the best-
performing WAD classifier is fine-tuned to detect which segments of
the recorded speech are unaffected by noise and which are corrupted
by other acoustic triggers or other noise. This way we obtain clean
whispered speech.

4. FRAMEWORK DETAILS

In this section, we discuss the different whisper activity detection
methods and audio labelling tools we used in the steps of the pro-



posed framework presented in Section 3.

4.1. Acoustic features for WAD

RASTA-PLP: It has been observed that slowly changing features in
the speech signal, such as spectral envelope obtained via linear pre-
diction, define whisper and phonated speech well. For the detection
of whispered speech in noisy environments, RASTA-PLP features
have been used successfully [23, 24]. The features are obtained by
applying linear prediction to a signal processed by a set of Bark-
scaled triangular filters. Usually delta features of first and second
order are used to represent the variation of the features over time.

Modulation features: There have also been studies of acoustic
feature dynamics in whispered speech. Such signal modulation over
time can be captured as variation in long-term energy measurements
(LTLEV) [25], or by estimating the group delay for different fre-
quency bands in the signal spectrum [26]. These methods, however,
require relatively long analysis windows, reducing the time resolu-
tion of the WAD. We propose to remove this problem by leveraging
the ability to model time dependencies with an RNN and a shorter
sequence length instead (cf. 4.3).

4.2. Deep neural networks for WAD

Conventional WAD uses classifiers such as SVMs or Gaussian Mix-
ture Models (GMMs) [23, 24, 26] to assign labels (e.g. whisper or
noise) to the feature vectors of each frame. Deep learning meth-
ods, however, are a popular choice in VAD [27] for distinguishing
between phonated and whispered speech [20].

In this work, by comparing to these standards, we evaluate the
utility of neural networks as classifiers for this task. Namely, first,
an MLP is used to classify each frame of the RASTA-PLP features.
Next, we use a long short-term memory (LSTM)-based [29] RNN
to integrate information across time. The RNN analyses a sequence
of consecutive RASTA-PLP frames, and is therefore able to make
decisions that use more information consistently across time.

4.3. Proposed WAD

Using RASTA-PLP and delta features of first and second order as
input, three classifiers are trained to detect whisper speech in noisy
environments. The selected classifiers are an SVM, a multi-layer
perceptron, and an LSTM-based RNN that can take advantage of
time dependencies in the signal. Additionally, a pre-trained MLP-
based VAD model [27, 28] is included as a state-of-the-art method
designed for phonated speech, to indicate how such methods may
perform in whispered speech situations.

The input RASTA-PLP features are calculated using an analysis
window length of 40 ms and a hop size of 20 ms. We then calcu-
late 19 linear prediction coefficients for each RASTA-filtered frame
and extract delta features of first and second order. The resulting
57-dimensional input is used for all the proposed classifiers. The
proposed MLP then processes each frame of the input features. This
model comprises 3 fully-connected hidden layers of sizes 64, 64 and
8 respectively, all with ReLU activation functions. The output of
the network has a sigmoid activation function and results in a one-
dimensional value in the range of (0, 1), which represents the prob-
ability of speech in the current frame.

In turn, the proposed RNN processes a sequence of input fea-
tures of length 30, which corresponds to an audio segment 0.6 s long.
We built the proposed RNN using two unidirectional LSTM layers
with 64 hidden units to maintain a low computational complexity
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Fig. 2: The classification of many whispered speech samples (from
ASMR) cast to 2D space using principal component analysis in
Edyson. Green data points represent samples labelled as clean
speech and yellow ones contain noisy speech.

in the system. One final fully-connected layer with sigmoid activ-
ation processes the output of the last LSTM cell and returns a one-
dimensional value in the range [0, 1], which represents a probability
value for speech being present in the signal. A decision threshold is
chosen as the optimum value in the ROC curve [30].

Baseline WAD dataset: In order to train and evaluate the first
step of the framework with the proposed WAD methods, we gener-
ate a noisy whispered speech dataset. The clean whispered speech is
taken from whispered utterances in the CHAINS dataset [10]. This
dataset contains whisper data from 36 different speakers (16 female
and 20 male) with 37 utterances per speaker and a total of 6 hrs
of speech. The speakers have an Irish accent, except for four of
each gender with a UK accent. Environmental noise is then extrac-
ted from the QUT noise dataset [31], which contains environmental
noises such as recordings from a kitchen, a café, the inside of a car
with windows open and closed, and a noise source in a reverber-
ant room. Speech from the clean whisper dataset is separated into a
training set with 15 male and 12 female speakers, and a test set with
5 male and 4 female speakers. Additionally, we keep 20% of the
training utterances as validation data. Noisy mixtures are generated
with 10, 5 and 0 dB SNR, with 50 speech utterances chosen at ran-
dom for each noise-SNR combination. Each speech utterance is then
followed by a silence with the same length as the speech signal, thus
resulting in equal parts speech and non-speech data. The speech and
noise recordings are resampled to 16 kHz before mixing.

4.4. Whispered data labelling

ASMR data: We extract ASMR recordings from online platforms
using youtube-dI’. We gather data from 10 speakers, 4 male and 6 fe-
male. In order to allow for a robust evaluation of the proposed frame-
work, we focus on recordings of high quality whispered speech, i.e.
containing direct whispering into the microphone without continu-
ous background noise and where the metadata suggest that the focus
of the recording is the whisper trigger e.g. finger tapping. The data
duration per speaker is approximately 6 hours, i.e.: 60 hours in total.
The extracted samples are presented in the repository as a set of links
to the corresponding video and a download script.

To train data-driven classifiers that adapt to the characteristics of
ASMR recordings, it is necessary to provide labels for at least some
of the downloaded data. The sheer size of such data, several hundred
thousand hours, although in itself an advantage, prohibits manual
labelling due to effort and cost. We have previously developed a
tool for efficient annotation of large amounts of hitherto unexplored

3https://youtube-dl.org/
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Table 1: Accuracy and Fl1-score results for the different whisper
activity detection classifiers evaluated on the validation set and test
set with different SNR values: (SVM) RASTA-PLP features with
SVM [23], (VAD) pre-trained state-of-the-art VAD [27], (MLP) cus-
tom MLP, (RNN) custom RNN.

[ Metric | Data | SVM [ VAD [ MLP | RNN |
FI (%) | validation | 87.63 [ - ] 89.09 [ 94.07
Acc (%) | validation | 89.31 [ -] 90.87 | 9431
FI (%) | test10dB | 90.01 | 81.19 | 91.89 | 9571
Acc (%) | test 10dB | 90.97 | 81.81 | 92.03 | 95.71
FI (%) | test5dB | 88.38 | 77.13 | 88.06 | 93.69
Acc (%) | test5dB | 89.88 | 79.02 | 88.66 | 93.60
FI (%) | test0OdB | 84.33 | 74.89 | 83.30 | 91.34
Acc (%) | testOdB | 86.81 | 77.49 | 84.82 | 91.38

data semi-automatically, allowing to label hours of audio in several
minutes. Edyson [7] is a machine learning supported, human-in-the-
loop interface that lets the annotator simultaneously assign labels to
many instances of similar data. Edyson divides the audio signal into
snippets of fixed length between 100 and 1000 ms, and extracts spec-
tral features of speech, such as MFCCs [32]. It then applies several
dimensionality reduction techniques such as PCA and ¢-SNE and
plots the corresponding features in 2D space, as shown in Fig. 2. The
data is presented to the user as points in 2D. The user can listen to
multiple segments in the same area and assign a label to all of them
with a single click. Additionally, it is possible to alternate between
representations cast by the dimensionality reduction methods, adapt-
ing to different characteristics of the data. The labels are then stored
with their corresponding timestamps.

Labelling with Edyson has been found to be highly accurate [7].
The time needed for labelling does not scale linearly with the amount
of audio being annotated. In practice, using the right input features
plays a significant role defining clear boundaries between the differ-
ent data classes for rapid and easy labelling [33]. We have tested sev-
eral features to discern whispered from phonated speech and noise,
such as multitaper spectra [34] or RASTA-PLP.

4.5. Augmented data for CWAD

While we can extract large amounts of whispered speech data from
ASMR recordings, it is hard to control the characteristics of these
speech signals and the resulting data size. In order to train a CWAD
that identifies clean whispered speech, and also to perform a robust
evaluation of that method, we create augmented data. First, we com-
bine the clean whispered speech from the ASMR recordings with
clean utterances from CHAINS. We then take segments identified as
noise by WAD in the ASMR recordings and add them to the clean
whisper data. This way, we obtain a set of noisy, labelled audio
samples at different SNR levels useful for both training and testing.

5. RESULTS AND DISCUSSION

We analyse the performance of the proposed WAD using accuracy
and F1-score over the validation and test sets for each SNR level.
The results for the WAD step are presented in Table 1. We can ob-
serve that the pre-trained VAD presents a worse performance than
methods that use features adapted to whispered speech. This shows
that methods designed for phonated speech do not adapt properly
to whisper and different features are required. The best perform-
ing method is the RNN classifier, which outperforms the SVM and

Table 2: CWAD confusion matrix containing the fraction of true
negatives (TN), false negatives (FN), false positives (FP) and true
positives (TP).

SVM RNN
Noisy Clean Noisy Clean
True Noisy | TN:0.34 | FP: 0.074 | TN: 0.43 | FP: 0.064
Clean | FN:0.2 TP:0.38 | FN:0.11 | TP:0.39

MLP by about 5% absolute. This method will then be used in the
following steps of the framework.

We then apply the RNN classifier on the set of ASMR record-
ings, thus separating the segments of pure noise triggers and those
containing speech. We use Edyson to semi-manually label the cor-
responding speech signals we obtained as clean or noisy speech. To
evaluate the improvement Edyson provides over manual labelling,
we timed the Edyson sessions. A listener with several weeks of prac-
tice with the tool managed to assign labels to a 30-minute file in 7
minutes, which is at least four times faster than real time.

The results for the CWAD method on ASMR triggers using the
proposed RNN classifier are presented in Table 2. The overall accur-
acy is 82.10%. For CWAD, we are not only interested in the detec-
tion of clean whisper, but it is arguably more important to reject the
segments containing speech corrupted by ASMR triggers and other
noise. The trained CWAD system successfully errs on the side of
caution, in the sense that its false positive rate results in the smallest
value (6.4%) in Table 1.

To the authors’ knowledge, there are no other works on CWAD
that could be used as a reference for the obtained results. In com-
parison with the WAD methods in Table 1, the quality of the pro-
posed CWAD will need improvement, however, given the challenges
this data presents with regards to signal processing e.g.: low overall
sound volume and large data size, our framework already signific-
antly improves the efficiency of extracting relevant data.

6. CONCLUSIONS AND FUTURE WORK

Our results show that the proposed WAD outperforms previously
studied feature-based methods. Additionally, the presented CWAD
well separates clean whispered speech from that affected by other
acoustic triggers in ASMR recordings. With just one pass through
our proposed processing framework, we have accessed 20 hours of
whispered speech from 60 hours of downloaded ASMR data and we
are continuously adding more”. This already corresponds to half the
volume of other currently available whispered speech resources, yet
obtained in a much more efficient and scalable way. The data we
provide access to was found in-the-wild but features a uniquely high
recording quality with a variety of whispered speech styles that can
now be explored systematically.

Our future work involves using metadata analysis and machine-
assisted human classification to categorise the whisper styles present
in the genre and provide labels for further supervised learning. We
are also working on describing the acoustic characteristics of the
most "successful" ASMR audio examples, that is the ones that most
efficiently evoke neurophysiological (“tingles”, goosebumps), psy-
chological (relaxation) and emotional (intimacy) effects in the audi-
ence. This way we will further make way for studies of communic-
ative whisper of interest to e.g. phoneticians and linguists as well as
for human-computer interaction research leading to improvements
in the acceptability of voice assistants that whisper.

4 Accessible here: https://github.com/perezpoz/CleanWhisperDetection
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