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ABSTRACT

Analysis of X-ray images is one of the main tools to diagnose
breast cancer. The ability to quickly and accurately detect
the location of masses from the huge amount of image data
is the key to reducing the morbidity and mortality of breast
cancer. Currently, the main factor limiting the accuracy of
breast mass detection is the unequal focus on the mass boxes,
leading the network to focus too much on larger masses at the
expense of smaller ones. In the paper, we propose the multi-
head feature pyramid module (MHFPN) to solve the problem
of unbalanced focus of target boxes during feature map fusion
and design a multi-head breast mass detection network (MB-
MDnet). Experimental studies show that, comparing to the
SOTA detection baselines, our method improves by 6.58% (in
AP@50) and 5.4% (in TPR@50) on the commonly used IN-
breast dataset, while about 6-8% improvements (in AP@20)
are also observed on the public MIAS and BCS-DBT datasets.

Index Terms— Breast Mass Detection, Feature Pyramid
Networks, Multi-head Integration, Faster RCNN

1. INTRODUCTION

Breast cancer has become a major disease threatening women’s
health in terms of morbidity and mortality. According to
the statistics [1], in 2018 alone, the number of new cases
reached 2,088,849 (11.6%) and deaths were 626,679 (6.6%).
By comparing the morbidity and mortality rates of breast
cancer, it is clear that timely diagnosis and treatment at an
early stage can significantly reduce the mortality rate [2].
Currently, the detection of breast masses is mainly divided
into: ultrasound image detection, X-ray image detection and
biopsy. Among them, X-ray has become the main modality
for the early detection of breast cancer due to its outstand-
ing imaging performance. However, X-ray images require
specialized radiologists to screen a large number of Digital
Imaging and Communications in Medicine (DICOM) files,
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and the process of resolving X-ray images is very tedious
and time-consuming [3]. In order to improve the accuracy
and efficiency of breast mass detection, many computer-aided
detection methods based on deep learning have been rapidly
developed and achieved good results [4–7].

Most of the breast mass detection studies are based on
the classical network to adapt the network structure to the
characteristics of X-ray images. L. Zhang et al. [4] proposed
an Anchor-free YOLOv3 network to alleviate the imbalance
between positive boxes and negative boxes that occurs in
breast mass detection. B. Ibrokhimov et al. [5] proposed
a slider-cutting image method based on Faster RCNN to
generate small square patches to solve the problem of ex-
cessive X-ray image size and resolution. Y. Wu et al. [8]
first proposed the use of the Faster RCNN network based
on hierarchical candidate frames for breast mass detection.
The approach not only reduces the amount of data to be pro-
cessed but also improves the accuracy of detection. H. Cao
et al. [9] then proposed a new normalization approach and
image enhancement algorithm to further improve the detec-
tion accuracy of breast masses based on the FSAF network
structure. The aforementioned methods have achieved excel-
lent performance on public datasets such as INbreast [10] or
private datasets; however, they have a common shortcoming
in that they focus more on the features of large masses and
ignore those of small masses during feature fusion, which
thus leads to serious medical misdiagnosis and may endanger
the health of patients in clinical practices.

To solve the unequal focus in the feature fusion of breast
X-ray images in target detection, We propose a parallel multi-
head feature pyramid module (MHFPN). By adding two ad-
ditional aggregated focus heads, the network can more easily
focus on breast masses that make up a smaller percentage of
the image, resulting in improved detection accuracy. Based on
MHFPN, Faster RCNN is selected as the detection network.
By testing on three publicly available breast mass datasets,
our method can achieve the same performance as the previ-
ously mentioned X-ray breast image detection studies with a
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Fig. 1. Overview of multi-head high resolution FPN network. Since the head part of the detection network follows the original
structure, the head part has been omitted from the overall structure diagram.

simpler network structure.
In general, our contributions are three-folded: (1) We de-

sign a general MHFPN on the feature map fusion layer to alle-
viate the problem of unequal focus in the feature fusion stage.
(2) We propose a multi-headed breast mass detection network
(MBMDnet) to improve the accuracy of mass target detection
and reduce the miss detection rate. (3) Experiments show that
our method improves by 6.58% (in AP@50) and 5.4% (in
TPR@50) on the commonly used INbreast dataset, and 6%-
8% (in AP@20) on the MIAS and BCS-DBT datasets.

2. METHODS
2.1. Overall Structure
Inspired by PANet [17] and HRFPN [18], we propose a paral-
lel multi-head feature pyramid network to improve the accu-
racy of breast mass detection in X-Ray images. The network
consists of three parts, the backbone for extracting features,
the feature map path aggregation, and the multi-head module.
The overall structure is shown in Fig 1, where the network
is Faster RCNN, and the backbone is selected as Resnet50.
At the model input, the image size of the INbreast dataset is
3328 × 4084, which is oversized for the existing target de-
tection network breast X-ray images. Due to the limitation of
computational volume and operation speed, MHFPN uses re-
sized images (1333× 800) as the input of the network. Then,
the images are fed into the structure of the backbone to obtain
feature maps (Denoted as fmi, i ∈ (0, 3)) at different scales.
After that, the feature map is sent through a path aggregation
network of successive up and down paths to obtain the richer
feature maps (Denoted as P (fm), f ∈ (fm0, fm3)).

2.2. Multi-head Module
After the multi-resolution feature maps are aggregated by the
feature map paths composed of multiple pooling and con-
volution layers, the feature information flow is fully fused.
Compared with the feature-extracted fmi, P (fmi) not only
carries the precise location information in the bottom infor-

mation, but also retains the useful information in each feature
level. Because of the long path way of information experi-
enced, the X-ray breast feature map suffers from a distraction
problem, making the focus of masses with a small image ra-
tio much smaller than that of masses with a large image ratio.
Therefore, we designed the multi-head module to alleviate the
inequality of focus. Through two feature aggregation head-
ers, the multi-resolution feature maps are assigned focus us-
ing the re-convolution to obtain the aggregated feature maps
(Denoted as SFms and SFml in Eq 1). Finally, according
to the demand of the network, the feature map resolution is
pooled to acquire the output of the corresponding resolution
(Denoted as Outis, i ∈ (0, 2) and Outjl , j ∈ (0, 1) in Eq 2).{

SFms =
(
P
(
fm0

)
+ P

(
fm1

))
,

SFml =
(
P
(
fm2

)
+ P

(
fm3

))
,

(1)

{
Outks = (c∗(p∗2k (SFms)) k ∈ (0, 2),

Outjl = (c∗(p∗2j (SFml)) j ∈ (0, 1),
(2)

where c∗ and p∗ indicate convolution layer and pooling layer,
respectively. 2k and 2j indicate the size of the dimensions in
the pooling layer. Eq 1 expresses the calculation process of
the feature map in the two parallel feature aggregation heads.
More specifically, the multi-head module obtains two aggre-
gated feature maps by measuring the output feature maps in
four different dimensions, interpolating and concatenating
the feature maps in adjacent dimensions to the same size.
Eq 2 illustrates the process of differentiation from the se-
mantic information-rich SFm into the corresponding output
feature maps. The heads are pooled several times to get the
corresponding size.

In particular, in order to achieve targeted recovery of
the network’s focus on multi-resolution feature maps, we
use parallel two-headed modules for high-resolution and low-
resolution features separately. Compared with the single-head
module (HRFPN), although the multi-head module increases
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Fig. 2. Visualized results of different models on INbreast, and blue (resp., red) boxes are detection results (resp., ground truths).

Table 1. Results of MBMDNet and classical object detection networks on the INbreast dataset
Model AP@50 AP@75 TPR@50 FLOPS Params

YOLOv3 [11] 0.3700 (0.0242) 0.1288 (0.0544) 0.8160 (0.0717) 19.39G 61.53M
Retinanet [12] 0.3774 (0.0652) 0.0920 (0.0325) 0.8226 (0.0823) 81.89G 36.14M

SSD [13] 0.4892 (0.0889) 0.1526 (0.1106) 0.7590 (0.1604) 87.86G 24.53M
Nas-FCOS [14] 0.4170 (0.1210) 0.0872 (0.0367) 0.8336 (0.0587) 201.57G 41.13M

Cascade RCNN [15] 0.5212 (0.0509) 0.3092 (0.1135) 0.7354 (0.0867) 244.11G 68.93M
Faster RCNN [16] 0.5804 (0.0730) 0.3160 (0.1577) 0.7716 (0.0633) 216.30G 41.13M

MBMDNet 0.6462 (0.0934) 0.3034 (0.1035) 0.8390 (0.0915) 291.36G 44.80M

Table 2. Detection results on three breast masses datasets.
Dataset Method AP@20 TPR@20
INbreast Faster RCNN 0.725 0.933

MBMDNet 0.806 0.962
BCS-DBT [19] Faster RCNN 0.350 0.881

MBMDNet 0.412 0.878
MIAS [20] Faster RCNN 0.312 0.535

MBMDNet 0.396 0.619

the calculation volume, it can attenuate the effect on focus
inequality due to the difference in the ratio of breast mass
images. Moreover, the approach can shorten the path of in-
formation flow insertion to the final resolution and prevent
the feature information from being scattered again. On the
feature maps of neighboring dimensions in the same group,
the higher-level semantic information is calculated by focus
reorganization with neighboring features using up-sampling
to retain and improve the influence of higher-level semantic
information on SFm. MHFPN has correspondingly im-
proved the detection effect both on small targets and on large
targets, and it works better on small targets.

3. EXPERIMENTAL STUDIES

3.1. Experimental Environment and Dataset

All experiments were run on a server with 2 Nvidia GeForce
2080 GPUs with 8192M RAM per card. The server has an
Intel(R) Xeon(R) Silver 4110 CPU with 2.10GHz and 16G
RAM. For the software configuration, all code was imple-
mented in Python based on the mmdetection framework.

Table 3. Compare to advanced detection models on INbreast.
Methods TPR@20 FPPI

Amit et al. [21] 0.87 1.423
Wu et al. [8] 0.88 0.750

Akselrod-Ballin et al. [22] 0.93 0.560
BMassDNet [9] 0.93 0.495

MBMDNet 0.96 0.636

The main dataset used for the experiment is the INbreast
dataset 1, which is more commonly used for breast mass de-
tection. The dataset has 107 images containing 116 masses.
Each image had an average of 1.1 masses, with the small-
est mass being 15 mm2 and the largest mass measuring 3689
mm2. Meanwhile, in order to test the performance of the net-
work on other different types of datasets, the earlier MIAS
dataset 2 and the latest BCS-DBT dataset 3 are also chosen.
For the accuracy of the experimental data, every dataset is di-
vided equally into five parts, of which three parts are the train-
ing set, one part is the validation set, and one part is the test
set. Five replicate experiments are conducted by randomizing
permutations of the five data parts. The data are processed
slightly differently depending on the experimental objectives.
Please refer to the corresponding experimental notes for de-
tailed processing.

1http://medicalresearch.inescporto.pt
2http://peipa.essex.ac.uk/info/mias.html
3https://wiki.cancerimagingarchive.net/

http://medicalresearch.inescporto.pt
http://peipa.essex.ac.uk/info/mias.html
https://wiki.cancerimagingarchive.net/


Table 4. Results of ablation experiments on the INbreast dataset

Net AP@50 AP@50S AP@50L TPR@50 FLOPS Params
FPN 0.5804 (0.0730) 0.1470 (0.0210) 0.6020 (0.0540) 0.7850 (0.0585) 216.30G 41.13M

HRFPN 0.5701 (0.0929) 0.0840 (0.0801) 0.5530 (0.0290) 0.8006 (0.0982) 274.24G 41.72M
PANet 0.5974 (0.1070) - 0.5560 (0.0390) 0.7964 (0.1505) 242.33G 44.67M

MHFPN 0.6462 (0.0934) 0.3260 (0.0740) 0.6345 (0.0295) 0.8390 (0.0915) 291.36G 44.80M

3.2. Main Results

In the paper, a variety of classical target detection net-
works are selected for training and testing on the INbreast
dataset. The best-performing network is selected by compar-
ing the common parameter metrics [23] such as AP@50 and
AP@75. In the test metrics, AP represents the average ac-
curacy rate. TPR is the True Positive Rate (i.e., Recall). @x
denotes the calculation of the relevant evaluation metric un-
der the restriction with the IOU > x. FLOPS and Params
represent the computational and parametric quantities of the
model, respectively. As can be seen from Table 1 (The data
in the table are the mean (standard deviation)), compared to
other classical networks, Faster RCNN achieves 58.04% and
31.60% in AP@50 and AP@75, respectively. Thus MBMD-
net is based on Faster RCNN and achieves 64.62% in the
AP@50 and 83.90% in the TPR@50.

Fig 2 visualizes the inference of different networks on the
INbreast dataset. In example 1, there are adjacent closer re-
gions with larger size masses and smaller size masses. From
the inference results, it can be observed that MBMDNet is
more effective in detecting such targets with larger size dif-
ferences. In examples 2 and 3, the detected breast mass is the
only mass in the entire image and is small in size. Compared
with others, the inference results of MBMDNet fit the ground
truth box more closely.

To further test the generalizability of the network un-
der different quality datasets, MBMDnet and Faster RCNN
are evaluated on both MIAS dataset [20] and BCS-DBT
dataset [19]. The above two datasets are treated in the same
way as the INbreast dataset. Due to the early production
of the MIAS dataset, the quality and annotation of the im-
ages differed significantly from the current approach. The
dataset showed a large amount of blurred noise, which se-
riously affected the correct rate of breast mass detection.
The BCS-DBT dataset is a recently proposed large dataset
for breast lesions. The dataset file has more image data and
less annotation data. The images are darker in general and
there is interference from non-breast objects, which is more
consistent with the real clinical situation.

From Table 2, it can be seen that there is a large difference
in performance on different quality data sets. But compared
to the Faster RCNN network, our approach still has a 6%-
8% improvement in AP@20. In the TPR@20 metric, our
method also shows an improvement of about 3.7% without
fine-tuning additional procedures.

To further compare the performance of MBMDNet, we
chose the advanced detection models with the INbreast

dataset of 107 images as the dataset for comparison. FPPI
represents False Positive per image. As can be seen in Ta-
ble 3 (The data in the table are the maximum values from five
experiments), Although our method does not perform well in
the FPPI , it reaches 0.96 in the TPR@20 metric. In med-
ical computer-aided systems, a missed test is more harmful
to the judgment of a medical condition than a false test. And
in the network training, we use Free-response Receiver Op-
erating Characteristic Curves (FROC) to select the best TPR
performance. Therefore, our method is not the best model in
terms of performance on the FPPI metric.

3.3. Ablation Study

To test the effectiveness of each part of the MHFPN mod-
ule, we performed an ablation analysis of the information flow
channels during the feature fusion phase of the target detec-
tion network. Meanwhile, in order to target test the degree
to the network’s equalization of focus to target boxes with
different size ratios in the feature fusion, the accuracy of dif-
ferent sizes of target boxes (AP@S and AP@L) is added to
the evaluation metrics of the ablation experiment. Accord-
ing to the format of the COCO data, the size of the breast
mass is divided into large, medium and small boxes, and then
the performance metrics are tested. AP@50S indicates the
detection accuracy of the small box under the condition that
IOU > 0.5. AP@50L is the detection accuracy of a large
box under the same constraints.

According to Table 4, compared to the FPN network, both
PANET and HRFPN had reduced detection accuracy for tar-
gets with a smaller ratio of x-ray breast masses. Thus, it is
demonstrated that the detection of small targets in X-ray im-
ages by simply adding information flow paths or information
aggregation does not perform well. Although MHFPN in-
creases the model computation, the overall detection accu-
racy is improved by 6%AP@50. In particular, it improves
the detection accuracy of small targets by 17.9%, thus prov-
ing that the parallel multi-head network structure can alleviate
the problem of unbalanced focus of target boxes. From the
visualization in Fig 3, it can be observed that when there are
two adjacent target boxes of different sizes (such as Example
1), the other three networks have improved accuracy com-
pared to the FPN network. Specifically, the MHFPN network
has the highest IOU accuracy in terms of specific detection
performance. Additionally, for larger target boxes (such as
Example 2), MHFPN also achieves the best results.
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Fig. 3. Visualized results of ablation experiments on INbreast, and blue (resp., red) boxes are detection results (resp., ground
truths).

4. CONCLUSIONS AND FUTURE WORKS

In the paper, we designed a general multi-head feature pyra-
mid module (MHFPN) to address the problem of unequal
focus to the target frame by multi-resolution feature maps in
the feature fusion. Based on MHFPN, the detection network
(MBMDNet) was designed for breast mass detection. Ex-
periments showed that MBMDNet greatly outperformed the
SOTA detection baselines on multiple breast X-ray datasets.
In particular, the overall performance of the network was
improved more in the detection accuracy of targets with a
smaller image. However, this work can be further improved,
to address the problem of lacking sufficient labels, an in-
teresting future research is to investigate semi-supervised
approaches [24–27] to utilize the unlabeled data in the train-
ing process of the model.
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Nianyi Li, Albert Świecicki, Joseph Y Lo, and Maciej A
Mazurowski, “A data set and deep learning algorithm for
the detection of masses and architectural distortions in digi-
tal breast tomosynthesis images,” JAMA Network Open, vol. 4,
no. 8, pp. e2119100–e2119100, 2021.

[20] P Suckling J, “The mammographic image analysis society dig-
ital mammogram database,” Digital Mammo, pp. 375–386,
1994.

[21] Guy Amit, Sharbell Hashoul, Pavel Kisilev, Boaz Ophir, Eu-
gene Walach, and Aviad Zlotnick, “Automatic dual-view mass
detection in full-field digital mammograms,” in Proceedings
of International Conference on Medical Image Computing and
Computer-Assisted Intervention, 2015, pp. 44–52.

[22] Ayelet Akselrod-Ballin, Leonid Karlinsky, Alon Hazan, Ran
Bakalo, Ami Ben Horesh, Yoel Shoshan, and Ella Barkan,
“Deep learning for automatic detection of abnormal findings in
breast mammography,” in Proceedings of DLMIA workshops,
pp. 321–329. 2017.

[23] Hexiang Zhang, Xiaofang Yang, Ziyu Hu, Ruoxin Hao, Ze-
hang Gao, and Jianhao Wang, “High-density pedestrian de-
tection algorithm based on deep information fusion,” Applied
Intelligence, pp. 1–13, 2022.

[24] Shuo Zhang, Jiaojiao Zhang, Biao Tian, Thomas Lukasiewicz,
and Zhenghua Xu, “Multi-modal contrastive mutual learn-
ing and pseudo-label re-learning for semi-supervised medical
image segmentation,” Medical Image Analysis, vol. 83, pp.
102656, 2023.

[25] Zhenghua Xu, Shijie Liu, Di Yuan, Lei Wang, Junyang Chen,
Thomas Lukasiewicz, Zhigang Fu, and Rui Zhang, “ω-



net: Dual supervised medical image segmentation with multi-
dimensional self-attention and diversely-connected multi-scale
convolution,” Neurocomputing, vol. 500, pp. 177–190, 2022.

[26] Zhenghua Xu, Chang Qi, and Guizhi Xu, “Semi-supervised
attention-guided CycleGAN for data augmentation on medical
images,” in Proceedings of the IEEE International Conference
on Bioinformatics and Biomedicine, 2019, pp. 563–568.

[27] Di Yuan, Yunxin Liu, Zhenghua Xu, Yuefu Zhan, Junyang
Chen, and Thomas Lukasiewicz, “Painless and accurate med-
ical image analysis using deep reinforcement learning with
task-oriented homogenized automatic pre-processing,” Com-
puters in Biology and Medicine, vol. 153, pp. 106487, 2023.


	1  INTRODUCTION
	2  METHODS
	2.1  Overall Structure
	2.2  Multi-head Module

	3  EXPERIMENTAL Studies
	3.1  Experimental Environment and Dataset
	3.2  Main Results
	3.3  Ablation Study

	4  CONCLUSIONS And Future Works
	5  ACKNOWLEDGMENTS
	6  References

