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ABSTRACT

Backpropagation-based supervised learning has achieved
great success in computer vision tasks. However, its biolog-
ical plausibility is always controversial. Recently, the bio-
inspired Hebbian learning rule (HLR) has received extensive
attention. Self-Organizing Map (SOM) uses the competitive
HLR to establish connections between neurons, obtaining
visual features in an unsupervised way. Although the repre-
sentation of SOM neurons shows some brain-like character-
istics, it is still quite different from the neuron representation
in the human visual cortex. This paper proposes an improved
SOM with multi-winner, multi-code, and local receptive field,
named mlSOM. We observe that the neuron representation
of mlSOM is similar to the human visual cortex. Further-
more, mlSOM shows a sparse distributed representation of
objects, which has also been found in the human inferior
temporal area. In addition, experiments show that mlSOM
achieves better classification accuracy than the original SOM
and other state-of-the-art HLR-based methods. The code is
accessible at https://github.com/JiaHongZ/mlSOM.

Index Terms— Self Organizing Maps, Unsupervised
Learning, Image classification

1. INTRODUCTION

Backpropagation-based supervised learning has been exten-
sively studied in recent years. For image classification, the
adoption of backpropagation enables convolutional neural
networks (CNNs) to extract features effectively [1, 2, 3], thus
improving classification performance. However, the biologi-
cal plausibility of the backpropagation is always controversial
[4].

The Hebbian learning rule (HLR) is a biologically plausi-
ble unsupervised learning mechanism and has been proposed
for a long time [6, 7], which suggests that: ”Neurons that fire
together wire together.” In a broad sense, the HLR refers to
a family of methods based on the idea of Hebbian. Unfor-
tunately, vanilla HLR does not guarantee high performance
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Fig. 1. Visualization of the neuron representations: (a) Hebb-
Net, (b) Backpropagation, (c) SOM for handwritten digits. (d)
TE for objects (Image Source: [5]). Colored bars in the top
(red), middle (green) and bottom graphs in (d) are penetration
sites inside the active spots of the stimulus.

for image classification. Recently, several methods have been
proposed to improve the classification accuracy for HLR [8,
9, 10]. Self-Organizing Map (SOM) uses the Winner-Takes-
All competition HLR to establish connections between neu-
rons [11, 12], which achieves high classification performance.
However, they failed to obtain brain-like neuron representa-
tion. In human visual cortex, the representation of an object
presents a topological structure [5]. For example, Fig. 1 (d)
shows the representation of a complex object and its parts in
the anterior part of the IT cortex (architectonically defined as
area TE). By comparison, it can be found that the neuron rep-
resentations of existing HLR methods (Fig. 1 (b) and (c)) and
the backpropagation method (Fig. 1 (a)) lack the object parts.

This paper proposes an improved SOM, mlSOM. Com-
pared with the original SOM, three modifications are made in
mlSOM: from global receptive field (GRF) to local receptive
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Fig. 2. The architecture of mlSOM. For a given input image, mlSOM first divide it into patches through a sliding window.
Then for each patch, its WNs in the hidden layer are calculated in the SOM phase. In the Coding phase, the neuron states of the
hidden layer will be coded to a feature map, in which 1 denotes the WN. The feature map is then send to the linear classifier to
obtain the classification result.

Table 1. The hyper-parameters of mlSOM.
Datasets Hyper-parameters

hidden neurons w s n σ k lr
MNIST 44× 44 14× 14 7 5 2 20 0.3

CIFAR-10 44× 44 16× 16 4 5 2 100 0.3

field (LRF), from single-winner to multi-winner, and from
single-code to multi-code. The main contributions of this
work contain at least three key advantages. Firstly, we pro-
pose to improve the representation of SOM from a brain-like
perspective, which may contribute to a promising future re-
search direction for SOM. Secondly, we improve the original
SOM in three ways inspired by the human brain and demon-
strate their effectiveness for classification. Thirdly, the pro-
posed mlSOM shows brain-like representation and gets high
classification performance compared with other state-of-the-
art Hebbian learning-based methods.

2. RELATED WORK

Self-Organizing Map (SOM) is a kind of HLR-based neural
network. For image classification, current studies for SOM
mainly focus on improving classification accuracy. Super-
vised SOM was proposed in [13] and got good classifica-
tion results. Some work presented that deep SOM would get
higher classification performance than the single-layer SOM
[14, 15]. Combining SOM and CNN to obtain both accuracy
and biological plausibility has also attracted widespread inter-
est [16, 17, 18, 19]. This paper presents a new idea to improve
SOM from the neuron representation perspective.

3. PROPOSED METHOD

The proposed mlSOM is based on the unsupervised SOM al-
gorithm mentioned in [14]. We first revisit it.

3.1. The original SOM

SOM is a classic unsupervised learning algorithm using the
”winner-take-all” learning rule, which gets a non-linear pro-
jection of high-dimensional data over a small space. Each
neuron in SOM consists of a trainable vector. SOM com-
putes Euclidean distances between the input pattern and each
neuron. The neuron that has the least distance is the winner
neuron (WN). WN and its neighbors will be updated to be
closer to the input pattern during training. The update value
decreases as the distance between neurons and WN increases.

3.2. mlSOM

Fig. 2 shows the architecture of mlSOM whose hyper-
parameters are illustrated in Table 1. mlSOM is based on
SOM, and the three modifications in mlSOM are as follows.

1) From GRF to LRF. SOM computes the distance be-
tween the whole input image and hidden layer neurons, lead-
ing to huge neuron vectors. Inspired by the human eye move-
ment, we propose to use LRF, which can be realized by a
sliding window. As shown in Fig. 2, the size of the input im-
age is (H,W ) and the window size is set to (w,w) with stride
(s, s). The size of the neuron vector in mlSOM is w2, which
is ( w2

H×W ) of the original SOM.
2) From single-winner to multi-winner. The original

SOM uses the ”winner-take-all” learning rule. It computes



Algorithm 1 Learning algorithm for mlSOM
Input:

Training set of images and labels (X , Y )
Output: Trained mlSOM
1: initialize the model parameter W with the standard normal dis-

tribution and hyper-parameters in Table 1
lr, epochs← initialize the learning rate, epochs

2: % SOM Phase (unsupervised)
3: for epo ∈ epochs do
4: for x ∈ X do
5: xp ← Sliding(x) % image patches obtained by the slid-

ing window;
6: for xpi ∈ xp do
7: % distance of xpi and neurons in mlSOM
8: for Wj ∈W do
9: dij ← ‖xpi −Wj‖

10: end for
11: sort dij in ascending order;
12: WNs← the top n W ;
13: [(XWN , YWN )]← the coordinate of the first n WNs;
14: % update learning rate
15: lrepo ← lr ×

(
1− epo

epochs

)
;

16: for WNi ∈WNs do
17: for Wj ∈W do
18: % compute updating neuron vector decay value;

19: decay = e

‖(XWNi
,YWNi)−

(
XWj

,YWj

)
‖
2

2σ2 ;
20: ∆W = lrepo × decay × (Wi −WN );
21: Wi ←Wi + ∆W ;
22: end for
23: end for
24: end for
25: end for
26: end for
27: % Coding phase (supervised)
28: for epo ∈ epochs do
29: for x ∈ X do
30: xp ← Sliding(x);
31: for xpi ∈ xp do
32: Gp ← binary 2D grid with k WNs of the hidden layer

for xp;
33: Gsum = Binary(

∑
Gp);

34: feature map← Gsum;
35: % prediction of the classifier
36: pre = f(featuremap);
37: minimize L(pre, Y );
38: end for
39: end for
40: end for

Euclidean distances between the input image and neurons in
the hidden layer and chooses one WN. However, population
coding widely exists in the human visual cortex [20]. It mo-
tivates us to change the single-winner to multi-winner. As
shown in Fig. 2 SOM Phase, for every image patch, the hid-
den layer of mlSOM obtains one 2D grid with n winners. For
every winner, the vector-updating algorithm is similar to the

original SOM.
3) From single-code to multi-code. The original SOM

and some deep SOMs use the 2D grid with a single WN as
the classification feature map. Also inspired by the popula-
tion coding, mlSOM generates the feature map with multiple
WNs, as shown in Fig. 2 Coding Phase. Specifically, mlSOM
uses neurons with the first k WNs to achieve the multi-code.
Here, k can be different from the multi-winner n. In Fig. 2
Coding phase, the 2D grids of input image patches are trans-
formed to the corresponding binary matrixs, in which 1 de-
notes the WN. These matrices are summed together and bina-
rized as the feature map of the input image.

mlSOM is an unsupervised learning algorithm. We
trained a linear classifier to classify images using their ml-
SOM feature maps.

3.3. Training method

The training method of mlSOM is shown in Algorithm 1.
This training process can be divided into two phases. In the
SOM phase, an input image is firstly divided into patches by
the sliding window. Then, Euclidean distances of the image
patches and the hidden layer neurons are computed. The top n
neurons with minimum distance will be selected as WNs. For
each neuron of the WNs, the algorithm updating the neuron
vectors in mlSOM is similar to the original SOM.

When the SOM phase is finished, we get a trained hidden
layer. During the coding phase, for each input image patch,
a corresponding 2D grid is obtained from the hidden layer of
mlSOM. We convert this 2D grid into a binary coding matrix,
in which 1 denotes the WN. Here, the number of 1 in the
coding matrix is set to k. Then, we obtain the sum of all the
patch grids and binarize it to get the feature map representing
a specific object. To verify the classification ability of the
feature map, we train a linear classifier with the help of error
backpropagation. The training object is minimizing the cross-
entropy loss:

L(x) =

N∑
c=1

ylog(f(x)), (1)

where x denotes the input image, f(·) denotes the classifier,
and y denotes its label.

4. EXPERIMENTS

4.1. Experiment results

We use two datasets MNIST[21], CIFAR-10[22] to evalu-
ate the proposed mlSOM. This section compares mlSOM to
some popular Hebbian learning-based methods. We choose
the methods with a single hidden layer for a fair comparison.
As shown in Table 2, mlSOM performs significantly better
classification results than that of HebbNet and SOM, achiev-
ing 96.79% test accuracy on MNIST. According to the abla-
tion experiments results in Table 2, the three modifications,



(a) representations (b) coding

Fig. 3. (a) Neuron representations learnt by the mlSOM after training on MNIST. (b) Visualization of the feature maps and
neuron representations of the specific input images. The top row shows the input images and their feature maps. Yellow dots in
feature maps represent the WNs. The bottom row shows the neuron vectors of the WNs.

Table 2. Classification accuracy results and ablation experi-
ments results of mlSOM on the MNIST dataset.

Method Test Accuracy
Vanilla Hebbian 10.28
HebbNet[9] 93.25
SOM 93.07
DSOM [14] 96.17
SOM+mult-winner 95.40
SOM+mult-winner+LRF 96.72
mlSOM 96.79

LRF, multi-winner, and multi-code, effectively contribute to
better performance. Table 3 shows the results on CIFAR-
10. It can be observed that mlSOM can achieve competi-
tive results with the state-of-the-art methods. Furthermore,
mlSOM trades off the classification accuracy and the conver-
gence speed.

4.2. Neuron representations of mlSOM

According to Fig. 1 and Fig. 3, the neuron representation ob-
tained by mlSOM exhibits brain-like characteristics which are
similar to the neuron activity detected in the human TE [5].
Specifically, we found that neurons in mlSOM respond to the
whole and part of the object. Furthermore, mlSOM presents a
brain-like distributed coding method. Fig. 3 (b) shows the fea-
ture map and neuron representations in mlSOM for digits two
and eight. Taking the digit two as an example, its representa-
tions in mlSOM consist of the arcs, slashes, object features,
and corresponding parts. These representations are observed
in the human visual cortex [23]. It is worth noting that neu-
rons representing slashes are also detected in digit eight. This
evidence suggests that neurons in mlSOM can respond to fea-

Table 3. Classification accuracy results on the CIFAR-10
dataset.

Method Train Acc Test Acc Epochs
Vanilla Hebbian 11.56 15.23 200
BackProp 39.89 41.28 200
Krotov et al. [8] 55.05 50.75 1500
Amato et al. [10] - 41.78 20
HebbNet [9] 43.13 45.69 200
mlSOM 51.82 43.65 200

ture combinations of different objects, contributing to a larger
encoding capacity. It is very similar to the sparse distributed
representation in human IT [24, 25, 26].

5. CONCLUSION

This paper proposes an improved SOM method, mlSOM,
which achieves better classification accuracy than other Heb-
bian learning-based methods on MNIST and competitive ac-
curacy on CIFAR-10. mlSOM makes improvements based on
the brain-inspired designs, including LRF, multi-winner, and
multi-code. Ablation experiments show the effectiveness of
these three modifications. The most significant contribution
of mlSOM is that it exhibits brain-like neuronal represen-
tations and coding. Our research may inspire the design of
visual cortex computing model and provide a novel direction
for SOM research.
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