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ABSTRACT

Deep neural networks (DNNs) are vulnerable to backdoor at-
tacks. The backdoor adversaries intend to maliciously con-
trol the predictions of attacked DNNs by injecting hidden
backdoors that can be activated by adversary-specified trig-
ger patterns during the training process. One recent research
revealed that most of the existing attacks failed in the real
physical world since the trigger contained in the digitized test
samples may be different from that of the one used for train-
ing. Accordingly, users can adopt spatial transformations as
the image pre-processing to deactivate hidden backdoors. In
this paper, we explore the previous findings from another side.
We exploit classical spatial transformations (i.e., rotation and
translation) with the specific parameter as trigger patterns to
design a simple yet effective poisoning-based backdoor at-
tack. For example, only images rotated to a particular angle
can activate the embedded backdoor of attacked DNNs. Ex-
tensive experiments are conducted, verifying the effectiveness
of our attack under both digital and physical settings and its
resistance to existing backdoor defenses.

Index Terms— Backdoor Attack, Physical Attack, Back-
door Learning, Trustworthy ML, AI Security

1. INTRODUCTION

Currently, deep neural networks (DNNs) have been widely
adopted in many applications, such as facial recognition
[1, 2, 3]. However, their success relies heavily on large
amounts of training data and massive computational power
that are not readily available to all researchers and developers.
Accordingly, people usually adopt third-party training data,
outsource their training process to third-party computational
platforms (e.g., Google Cloud or Amazon Web Services),
or even directly use third-party models. However, when us-
ing these resources, the training procedures are no longer
transparent to users and may bring new security threats.
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Backdoor attack is one typical training-phase threat [4, 5,
6]. It is also the main focus of this paper. Specifically, back-
door adversaries poison a few training samples by adding pre-
defined trigger patterns to their images and modifying their
labels to a specific target label. These generated poisoned
samples and remaining benign samples will be used to train
victim DNNs. In this way, the attacked model will learn hid-
den backdoors, i.e., the latent connections between trigger
patterns and the target label. In the inference process, the ad-
versaries can use pre-defined trigger patterns to activate hid-
den backdoors, leading to malicious model predictions.

Currently, most of the existing backdoor attacks are static
[4, 7, 8], where adversaries adopted the same trigger patterns
in the inference process as those used in the training process.
Recent research [9] demonstrated that these attacks are vul-
nerable to spatial transformations (e.g., flipping and shrink-
ing) that can change the location or the appearance of trigger
patterns in the poisoned images. Accordingly, existing attacks
have minor effects in the physical world. The difference is
mostly caused by the change in distance and angle between
the camera and the target object, which is similar to introduc-
ing spatial transformations. In this paper, we explore these
findings from another side:

Can we use the transformations as triggers to design more
effective and stealthy attacks?

The answer to the aforementioned question is positive. In
this paper, we design a simple yet effective method, dubbed
backdoor attack with transformation-based triggers (BATT)'.
Specifically, we transform a few images with a specific pa-
rameter (e.g., rotate to a particular angle) and change their
labels to the target label. We also transform the images of re-
maining samples with other random parameters while keep-
ing their labels unchanged, to encourage that only the trans-
formations using this adversary-specified parameter can ac-
tivate model backdoors. Our attack is stealthy, since spa-
tially transformed images are still natural to human inspection
while it can naturally circumvent many backdoor defenses. In
particular, our BATT is still effective in the physical world,
where spatial transformations are also feasible.

Note that there is a concurrent research [10] having similar attack ap-
proaches, although with different motivations.
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Fig. 1: The main pipeline of our BATT. In the first stage, our BATT first transforms a few randomly selected images with a
specific parameter (e.g., rotation with a particular angle) and changes their labels to the target label. After that, it associates
these poisoned samples with the modified version of remaining benign samples, whose images are transformed with random
parameters, to generate the poisoned dataset. In the second stage, victims train their models on the poisoned dataset. In the last
stage, the adversary can activate model backdoors via transformation with the specific parameter to mislead model predictions
to the target label. Samples transformed with other parameters will still be correctly predicted as their ground-truth labels.

In conclusion, our main contributions are three-fold. 1)
We reveal that users can also adopt spatial transformations
to design feasible backdoor attacks (instead of backdoor de-
fenses). 2) We design a simple yet effective attack (i.e.,
BATT) with transformation-based triggers that are also fea-
sible under the physical setting. It is a new attack paradigm
whose triggers are not designed in a simple pixel-wise man-
ner. 3) We conduct extensive experiments on benchmark
datasets, verifying attack effectiveness under both digital and
physical settings and its resistance to existing defenses.

2. THE PROPOSED METHOD

2.1. Threat Model

In this paper, we focus on the poison-only backdoor attack
in image classification. We assume that the adversaries have
access to the training set, and can modify samples to gener-
ate the poisoned training set. However, they have no informa-
tion about and cannot change other training components (e.g.,
training loss and model structure).

In general, the backdoor adversaries have three main tar-
gets. Firstly, the backdoored models should correctly clas-
sify benign data. Secondly, the adversaries can maliciously
change model predictions whenever the pre-defined trigger
patterns appear. Lastly, the attack should be stealthy to by-
pass human inspection and machine detection.

2.2. Designing the Backdoor Attack with Transformation-
based Triggers (BATT)

In this section, we first briefly review the main pipeline of
poison-only backdoor attacks and then illustrate the technical
details of our proposed BATT method. The main pipeline of
our attack is shown in Figure 1.

The Main Pipeline of Poison-only Backdoor Attacks. Poi-
soning a few training data is the most direct and classical

method to implant hidden backdoors. Let D, = {(x;,v:)} ¥,
indicates the original training dataset containing N samples.
The adversaries will first randomly select a subset D, from
D, to generate its modified version D,,, by adding trigger pat-
terns to their images and change all labels to the pre-defined
target label yz, i.e., Dy, = {(G(x),y:)|(x,y) € Ds} where
G is the adversary-specified poisoned image generator. For
example, G(x) = x+tin the ISSBA [11], where ¢ is the trig-
ger pattern. After that, they will combine D,,, and remaining
benign samples D, — D, to generate the poisoned dataset D,,,
which will be released to victim users to train their models. In

particular, v 2 2=l is called poisoning rate.

Dl
In general, the differences between our method and exist-
ing attacks lie in two main aspects, including the generation

of poisoned samples and the poisoned dataset, as follows:

Generating Poisoned Samples. Different from previous
attacks adding trigger patterns in a simple pixel-wise man-
ner (e.g., patch replacement [4] or pixel-wise perturbation
[11]), we use spatial transformations that could happen in
the physical world with the specific parameter 6* to design
poisoned samples. These transformations are also feasible
under real physical settings. Specifically, we consider two
classical transformations, including 1) rotation and 2) trans-
lation, in this paper. We call them BATT-R and BATT-T,
respectively. Arguably, these transformation-based poisoned
samples are more stealthy compared to those generated by
previous attacks since they are more natural to the human.

Generating the Poisoned Dataset. We adopt randomly
transformed benign samples instead of the original ones
(i.e., D, — Dy) to generate the poisoned dataset. Specifi-
cally, let T'(+; ) denotes the adversary-specified transforma-
tion (with parameter #), we have D, £ D, UD; where
D, = {(T(a:i; Hi),yi)|(xi,yi) S (Do — DS), 0; ~ @} and ©
is the pre-defined value domain. This approach is to encour-
age that only the transformation with parameter 6* instead of
all parameters can activate model backdoors.



Table 1: The main results of methods on the CIFAR-10 and GTSRB datasets.

Dataset], ‘?vt[t:tili‘cj No Attack | BadNets Blended WaNet ISSBA PhysicalBA B(‘gfj B(‘ggs')T
cEaR.10 | BA (D) 92.26 9195  91.62  91.04 88.33 91.62 90.35 91.74
ASR (%) 9.98 97.24 8440  96.81  99.99 94.82 99.70 99.66
crsep | BA %) 97,51 9739 9753  97.02 9827 92.23 97.32 96.77
ASR (%) 5.75 9479 8539  67.66 100.00  90.32 99.97 99.92
3. EXPERIMENTS —— BA  —— ASR
BATT-R BATT-T

3.1. Main Experimental Settings

Dataset and Model. In this paper, we conduct experiments
on two benchmark datasets, including GTSRB [12] for classi-
fying traffic signs and CIFAR-10 [13] for nature images clas-
sification. We resize all images to 3 x 32 x32. We use ResNet-
18 [14] as the model structure on both datasets.

Baseline Selection. We compare our BATT with five repre-
sentative baseline attacks, including 1) BadNets [4], 2) back-
door attack with blended strategy (dubbed ‘Blended’) [15], 3)
WaNet [7], 4) ISSBA [11], and 5) physical backdoor attack
(dubbed ‘PhysicalBA’) [9]. We also provide the results of the
model trained on benign samples (dubbed ‘No Attack’) as an-
other baseline for reference.

Attack Setup. For all attacks, we set the poisoning rate as 5%
and the target label as ‘1’ on both datasets. Specifically, in our
BATT-R, we used a counterclockwise rotation with 6 = 16°

to generate poisoned samples and assign O, = [—10°,10°];
We translate images to the right-side with 8 = 6 (pixels) and
set ©; = [—3, 3] (pixels) in our BATT-T. We implement all

baseline methods based on BackdoorBox [16].

Evaluation Metric. We use attack success rate (ASR) and
benign accuracy (BA) to evaluate the effectiveness of methods
[5]. The higher the ASR and the BA, the better the attack.

3.2. Main Results in the Digital Space

As shown in Table 1, the performance of our BATT-R and
BATT-T (with adversary-specified parameter #*) is on par
with or better than that of all baseline methods. Specifically,
their attack success rate (ASR) is greater than 99.5% while
their benign accuracy (BA) is larger than 90% in all cases.

In particular, we present the results of our attacks on
poisoned testing samples generated by the same transfor-
mation but with different parameters, to verify that only the
adversary-specified 6* instead of all parameters can activate
model backdoors. As shown in Figure 2, the ASR decreases
significantly when using parameters inconsistent with 6*.
However, we notice that some parameters may also trigger
relatively high ASR, especially those near 6*. We will discuss
how to further alleviate this problem in our future work.
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Fig. 2: The performance of BATT-R and BATT-T w.r.t.
different transformation parameters used in the inference
process on GTSRB. The dashed lines indicate adversary-
specified parameter 6* used for training backdoored DNNss.
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Fig. 3: Digital samples and their physical versions taken by
a camera with different angles. All images with the specific
angle (last column) are predicted by our BATT-R as the tar-
get label, while the predictions of images with other angles
(second to fourth columns) are their ground-truth labels.

3.3. Main Results in the Physical Space

As illustrated in Section 2.2, rotations and translations are the
feasible approximation to the transformations involved in the
physical world. In this section, we verify the effectiveness of
our BATT in the physical space.

For simplicity, we take our BATT-R on GTSRB as an
example for the discussion. Specifically, we take photos of
some real-world traffic signs with different angles, based on
the camera in iPhone (as shown in Figure 3). We adopt the
attacked model obtained in Section 3.2 to predict the label of
all captured images. The results show that all images with
the specific angle (those in the last column) are predicted as
the target label (i.e., ‘Speed Limit 30’), while the predictions
of images with other angles (those in the second to fourth
columns) are their ground-truth labels.
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Fig. 4: The effectiveness of our BATT-R and BATT-T with
different trigger patterns on the GTSRB dataset.
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Fig. 5: The resistance of our attacks to fine-tuning and model
pruning on the GTSRB dataset.
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Table 2: The effectiveness of our BATT with different target
labels (y;) on the GTSRB dataset.

Y — 1 2 12
Metric—
Attack] BA ASR BA ASR BA ASR
BATT-R | 97.32 99.97 | 97.36 99.90 | 95.92 100.00
BATT-T | 96.77 9992 | 97.29 9998 | 97.78  99.99

3.4. Ablation Study

Effects of the Trigger Pattern. Here we discuss whether our
methods are still effective with different trigger patterns (i.e.,
different 0*). As is shown in Figure 4, our attacks are still
effective as long as |6*| > 0. If the |6*| are too small, the
poisoned samples will serve as the outliers since the target
label is usually different from their original label, resulting in
relatively low benign accuracy and attack success rate.

Effects of the Target Label. In this part, we discuss whether
our methods are still effective with different target labels ;.
As shown in Table 2, our attacks can reach high BA and ASR
in all cases, although there may have some fluctuations.

3.5. The Resistance to Potential Defenses

The Resistance to Trigger-synthesis-based Defenses. Here
we discuss the resistance of our BATT to two representative
backdoor defenses, including neural cleanse [17] and Sen-
tiNet [18], which intend to synthesize the trigger pattern.
As shown in Figure 6, the synthesized pattern of BadNets
is similar to its ground-truth trigger pattern (:i.e., a white-
patch located in the lower right corner), whereas those of
our attacks are meaningless. Similarly, as shown in Figure
7, SentiNet can distinguish the trigger regions generated by
BadNets whereas failing to detect those of ours. These results
show that our attacks are resistant to them.

.-

(a) BadNets (b) BATT-R (c) BATT-T
Fig. 6: The potential trigger pattern of attacks synthesized by
neural cleanse on the GTSRB dataset.

(c) BATT-T
Fig. 7: The Grad-CAM of poisoned samples generated by
BadNets and our BATT on the GTSRB dataset.

(a) BadNets (b) BATT-R

Table 3: The resistance of our attacks to MCR and NAD.

Attack— BadNets BATT-R BATT-T

Method| | BA ASR | BA ASR BA ASR
MCR 96.65 0.14 | 98.44 6197 | 98.64 64.48
NAD 9577 021 | 97.69 99.99 | 97.84 99.99

The Resistance to Classical Model-repairing-based De-
fenses. In this part, we explore the resistance of our attacks to
two representative backdoor defenses, including fine-tuning
[19] and model pruning [20], which aim to remove backdoors
in a trained model. As shown in Figure 5, fine-tuning has
minor effects in reducing ASR even after 30 epochs. Model
pruning can significantly reduce the ASR when the prun-
ing rate is greater than 95% whereas the BA also degrades
largely. These results show that our attacks are also resistant
to fine-tuning and model pruning.

The Resistance to Advanced Model-repairing-based De-
fenses. In this part, we demonstrate that our attacks are also
resistant to two advanced model-repairing-based defenses, in-
cluding MCR [21] and NAD [22], to some extent. As shown
in Table 3, NAD has minor effects in reducing the ASR of
our attacks, although it can successfully remove model back-
doors of BadNets. MCR is more effective compared to NAD,
whereas the ASR is still larger than 60% after the defense.

We will explore the resistance of our attacks to other types
of defenses (e.g., [23, 24, 25]) in our future works.

4. CONCLUSIONS

In this paper, we revisited the influences of spatial transforma-
tions on backdoor attacks. We designed a simple yet effective
poison-only attack (dubbed BATT) using specific transforma-
tions as triggers. It is a new attack paradigm whose triggers
are not designed in a simple pixel-wise manner. In particular,
we demonstrated that the proposed BATT is highly effective
under both digital and physical-world settings and is resistant
to representative backdoor defenses.
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