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ABSTRACT

Meetings are increasingly important for collaborations. Action items
in meeting transcripts are crucial for managing post-meeting to-do
tasks, which usually are summarized laboriously. The Action Item
Detection task aims to automatically detect meeting content associ-
ated with action items. However, datasets manually annotated with
action item detection labels are scarce and in small scale. We con-
struct and release the first Chinese meeting corpus with manual ac-
tion item annotationsﬂ In addition, we propose a Context-Drop ap-
proach to utilize both local and global contexts by contrastive learn-
ing, and achieve better accuracy and robustness for action item de-
tection. We also propose a Lightweight Model Ensemble method to
exploit different pre-trained modelq’} Experimental results on our
Chinese meeting corpus and the English AMI corpus demonstrate
the effectiveness of the proposed approaches.

Index Terms— Action item detection, text classification, public
meeting corpus, contextual information, model ensemble

1. INTRODUCTION

Due to technological advances and the pandemic, online meetings
become more and more common for collaboration and information
sharing. Automatic Speech Recognition (ASR) systems can convert
audio recordings of meetings into transcripts. Many Natural Lan-
guage Processing (NLP) tasks are conducted on meeting transcripts
to automatically extract or generate important information such as
summaries, decisions, and action items. Action item refers to a task
discussed in the meeting and assigned to participant(s) and expected
to complete within a short time window after the meeting [1]. The
action item detection task aims to detect sentences containing infor-
mation about actionable tasks in meeting transcripts. Action item
detection could help users easily summarize meeting minutes, view
and follow up on post-meeting to-do tasks.

Action item detection is usually modeled as a sentence-level bi-
nary classification task, to determine whether a sentence contains ac-
tion items or not. Many previous works [2]] explore machine learning
methods and feature engineering on publicly available meeting cor-
pora such as ICSI [3] and AMI [4]. Recently, with the success of the
pretraining-finetuning paradigm and the revival of meeting-related
research, approaches have been proposed based on pre-trained mod-
els [5], such as BERT [6] and ETC [7]. In addition, some works [8]
focus on detecting each element of action items independently, in-
cluding task description, ownership, timeframe, and agreement.

For action item detection, existing public meeting corpora, such
as the AMI meeting corpus and the ICSI meeting corpus, are far

Ihttps://www.modelscope.cn/datasets/modelscope/
Alimeeting4MUG/summary

“https://github.com/alibaba-damo-academy/
SpokenNLP/tree/main/action-item-detection

[001] Speaker A: Hello everyone, welcome to the weekly meeting.

[002] Speaker A:

[003] Speaker A: Tim, could you please tell us about the tourism area? ...

[035] Speaker B:

[036] Speaker B: The positioning of the tourist area is still unclear. ...

[267] Speaker A: OK, next time we meet, how about tomorrow?

[268] Speaker B: Okay, we will continue talking about the project tomorrow.
[269] Speaker A: Okay, we'll tentatively schedule at 3 pm, see you tomorrow.

Fig. 1. An example of action item detection. We show the speaker
and sentence id, mark the action item, local context and

. The local context provides the timeframe information. And
the provides the task description information.

from adequate to evaluate advanced deep learning models. We ob-

tain 101 annotated AMI meetings with 381 action items following

previous works [5]. The ICSI meeting corpus comprises only 75

meetings without publicly available action item annotations. There-

fore, we construct and make available a Chinese meeting corpus of

424 meetings with manual action item annotations on manual tran-

scripts of meeting recordings (Table[)), to prompt research on action

item detection.

Context understanding plays a critical role in various tasks on
meeting transcripts. Prior works [5) 9] also explore context to im-
prove action item detection performance. However, most methods
concatenate the focus sentence with adjacent sentences (local con-
text) and only achieve limited gains. As shown in Figure[T] relevant
but non-contiguous sentences (global context) also provide useful in-
formation for action items. On the other hand, both local and global
contexts may contain irrelevant information, which may distract the
classifier. We propose a novel Context-Drop approach to improve
context modeling with regularization so that the model could focus
more on the current sentence, to better exploit relevant information,
and be less distracted by irrelevant information in context.

In addition, we observe that the majority voting labels are usu-
ally correct during action item annotations. Inspired by this obser-
vation, we propose a Lightweight Model Ensemble method to im-
prove performance by exploiting different pre-trained models while
preserving inference latency.

The contributions of our work are as follows:
¢ We construct and make available a Chinese meeting corpus with

action item annotations, to alleviate scarcity of resources and
prompt related research. To the best of our knowledge, this is so
far the largest meeting action item detection corpus.

* We propose a novel Context-Drop approach to improve context
modeling of both local and global contexts with regularization,
and achieve improvement in accuracy and robustness of action
item detection for both Chinese and English meeting corpora.

* We propose a Lightweight Model Ensemble approach to integrate
knowledge from different pre-trained models. We achieve im-
provement in accuracy while preserving inference latency.

Accepted paper. ©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.
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Fig. 2. Illustration of proposed Context-Drop (Section[3.1) and Lightweight Model Ensemble (Section[3.2) methods. Based on the pre-trained
models, we propose the Context-Drop method to employ contextual information for action item detection. We utilize both local and global
contexts to exploit as much relevant context as possible within the max sequence length of transformers. We also propose the Lightweight
Model Ensemble to improve performance using different pre-trained models.

2. DATASETS
2.1. AMI Meeting Corpus

The AMI meeting corpus [4] has played an essential role in various
meeting-related research. It contains 171 meeting transcripts and
various types of annotations. Among 171 meetings, 145 meetings
are scenario-based meetings and 26 are naturally occurring meet-
ings. The AMI meeting corpus is a common dataset for benchmark-
ing action item detection systems. Although there are no direct an-
notations for action items for this corpus, indirect annotations can be
generated based on annotations of the summary. Following previous
works [S], we consider dialogue acts linked to the action-related ab-
stractive summary as positive samples for action item detection and
otherwise negative samples. In this way, we obtain 101 annotated
meetings with 381 action items.

2.2. Building A Large-scale Chinese Meeting Corpus

The two common datasets for action item detection, namely the AMI
meeting corpus and ICSI meeting corpus, are both far from adequate
for evaluating advanced deep learning models on action item detec-
tion. As described above, there are only 101 annotated meetings with
381 action items in the AMI meeting corpus. Another public meet-
ing corpus, the ICSI meeting corpus, has action item annotations
for 18 meetings [10] and is much smaller for action item detection
research. Also, these annotations are no longer publicly available.
Scarce and small-scale meeting datasets have hindered research on
action item detection. To address this issue and prompt research on
this topic, we construct and make available a Chinese meeting cor-
pus, the AliMeeting-Action Corpus (denoted as AMC-A), with man-
ual action item annotations on manual transcripts of meeting record-
ings. We extend 224 meetings previously published in [11] with
additional 200 meetings. Each meeting session consists of a 15-
minute to 30-minute discussion by 2-4 participants covering certain
topics from a diverse set, biased towards work meetings in various
industries. All 424 meeting recordings are manually transcribed with
punctuation inserted. Semantic units ended with a manually labeled
period, question mark, and exclamation are treated as sentences for
action item annotations and modeling.

We formulate action item detection as a binary classification task
and conduct sentence-level action item annotations, i.e., sentences
containing action item information (task description, time frame,

AMC-A (ours)

AMI
All Train Dev Test

Total # Meetings 424 295 65 64 101
Total # Utterances 306,846 213,235 45,869 47,742 80,298
Total # Action 1506 1014 222 270 381
Kappa Coefficient 0.47 0.46 0.49 0.50 /
Avg. # Action per Meeting 3.55 3.44 3.42 4.22 3.77
Std. # Action per Meeting 3.97 3.98 3.35 4.41 1.95

Table 1. Statistics of our Chinese AMC-A corpus and the English
AMI meeting corpus studied in this work.

owner) as positive samples (labeled as 1) and otherwise negative
samples (labeled as 0). As found in previous research and our ex-
perience, annotations of action items have high subjectivity and low
consistency, e.g., only a Kappa coefficient of 0.36 on the ICSI cor-
pus [L10]. To ease the task, we provide detailed annotation guidelines
with sufficient examples. To reduce the annotation cost, we first se-
lect candidate sentences containing both temporal expressions (e.g.,
“tomorrow”’) and action-related verbs (e.g., “finish”), and highlight
them in different colors. Candidate sentences are then annotated by
three annotators independently. During annotation, candidate sen-
tences are presented with their context so that annotators can easily
exploit context information. With these quality control methods, the
average Kappa coefficient on AMC-A between pairs of annotators is
0.47. For inconsistent labels from three annotators, an expert reviews
the majority voting results and decides on final labels. Table[T]shows
that AMC-A has much more meeting sessions, total utterances, and
total action items than the AMI meeting corpus and comparable avg.
action items per meeting. To the best of our knowledge, AMC-A
is so far the first Chinese meeting corpus and the largest meeting
corpus in any language labeled for action item detection.

3. METHOD

We formulate action item detection as a binary classification task.
Given an utterance X with its context C, the model predicts the label
9y, i.e., whether X contains action items or not. Figure illustrates
the two proposed approaches, Context-Drop (Fixed and Dynamic)
and Lightweight Model Ensemble. Context-Drop explores local
and global contexts together with regularization. Lightweight Model
Ensemble is an efficient approach for improving performance using
different pre-trained models while preserving inference latency.



3.1. Context-Drop

Local and Global Context Coreferences and omission of infor-
mation are quite common in multi-party meetings. Relevant and
supporting information may appear in adjacent sentences or non-
contiguous sentences. Context understanding has played a critical
role in various understanding tasks in meetings, including sentence-
level action item detection. Relevant contexts are not limited to ad-
jacent sentences (local context). In real meeting scenarios, topics
are usually mixed, hence discussions of a certain action item may
spread in the session. We denote these relevant but non-contiguous
sentences by global context for action item detection.

Since the global context may be distant from the focus sen-
tence, including all sentences between the global context and the
focus sentence may exceed the max sequence length mandated
by Transformer-based pre-trained language models (PLMs), such
as BERT [6] and RoBERTa [12]], due to their quadratic time and
memory complexity to the input sequence length [13]. Hence, we
employ a context selection method to retrieve the global context for
each sentence. We use the cosine similarity of n-grams to measure
the similarity between sentences in a document, following the n-
gram overlap method [14]. For each sentence, we select the top-k
sentences with the highest similarity scores as its global context.
Context-Drop We propose a novel Context-Drop approach to im-
prove context modeling for action item detection. Inspired by Con-
trastive Learning and R-drop [15]], Context-Drop forces the predic-
tion probability distributions of a single sentence and the sentence
with its context to be consistent with each other. We hypothesize
that Context-Drop could help the model to focus more on the current
sentence, to better exploit relevant information and be less distracted
by irrelevant information in context, which in turn could improve the
robustness and performance of the model.

We propose two types of Context-Drop, namely, Context-Drop
(Fixed) and Context-Drop (Dynamic). As shown in Figure E], for
Context-Drop (Fixed), input; is the focus sentence, tnputs is the
sentence with its local/global context. For Context-Drop (Dynamic),
the local/global context of the focus sentence is selected dynami-
cally. Each sentence in context has a certain probability to be kept;
otherwise, the sentence is dropped from context. Both Context-Drop
variants force the prediction probability distributions for ¢nput; (de-
noted x) and inputs (denoted x’) to be as close as possible, by min-
imizing the bidirectional Kullback-Leibler divergence as in Eqn. 2}
The overall loss is calculated as Eqn.[3] where o is a hyperparameter:

. 1 f
Lég=— 3 log (P1(yilw:) - Pa(yil;)) (D
. 1 ,
L =3 (Dxr (Pr(yilaa)|| Pa(yil 7)) 2
+ Dxe (P2 (yi|2)| | Pr(yilzi)))
L' =Lés +a- Lig 3)

Context-Drop (Dynamic) makes the contrast between samples
more flexible. When all contexts are dropped for both input: and
inputa, Context-Drop (Dynamic) works equivalently to the R-Drop
(Sentence) method in Figure J] When all contexts are kept for
both input: and inputs, the approach works equivalently to R-
Drop (Context). When all contexts are dropped for ¢nput; and all
contexts are kept for inpute, the approach works equivalently to
Context-Drop (Fixed). Hence, Context-Drop (Dynamic) could be
considered as a generalization of the other three methods in Figure[2]

Model Modeling Task AMC-A F,
BERT sentence classification  64.7640.98
Longformer  sequence labeling 65.35+1.33
StructBERT  sentence classification — 67.84+1.20

Table 2. Positive F; on the Test set of our AMC-A corpus using
different pre-trained language models with different modeling tasks.

Input Method AMC-AF, AMIF,
sentence 67.84+1.20 38.67+£1.25
w/ R-Drop 68.77+0.82  39.26+1.70
+ local context 68.50+1.21  41.03+1.42
w/ R-Drop 68.79+042  42.7240.74
w/ Context-Dropg, 4 69.15+£0.91  43.12+0.74
w/o KL loss 68.23+1.11  40.71£1.78
w/ Context-Dropy,mic 69.53+0.75  42.05+0.31
w/o KL loss 67.97+0.53  41.44+2.29
+ global context 67.99+1.86 35.82+1.11
w/ R-Drop 69.80+1.14  37.88+1.04
w/ Context-Dropg, 4 69.07+0.57  39.23+0.73
w/ Context-Dropy,,mic 70.48+0.63  41.25+1.76
+ local & global context ~ 69.09+1.23  41.31+1.51
w/ R-Drop 68.72+1.04  40.75+1.28
w/ Context-Dropg, 4 69.2840.95  38.66+0.77
w/ Context-Dropy,,mic 70.82+1.33  41.50+1.52

Table 3. Positive F1 on the Test sets of our AMC-A corpus and the
AMI meeting corpus. All experiments fine-tune the pre-trained Chi-
nese and English StructBERT models respectively. We compare the
performance of different input methods (the single focus sentence or
the focus sentence with its local/global context) and different train-
ing loss, including the standard CE loss by default, with R-Drop, and
with the two variations of Context-Drop (Section [3.1).

Model Layers Pooler Layer AMC-A F;
StructBERT  67.84+1.20
StwuctBERT ¢ ‘BERTa 68.36:0.93
RoBERTa 66.87--0.44
RoBERTa StructBERT  67.2540.93

Table 4. Positive F; on the Test set of our AMC-A corpus, from
fine-tuning pre-trained StructBERT and RoBERTa models and the
hybrid model using Lightweight Model Ensemble (Section[3.2).

3.2. Lightweight Model Ensemble

During action item annotation, we observe that for inconsistent la-
bels from three annotators, the majority voting results are usually
correct despite the relatively low inter-annotator agreement, as the
expert only modifies 5%-10% of the majority voting labels. In-
spired by this observation, we explore model ensemble, a common
approach for improving performance. In this work, we propose a
Lightweight Model Ensemble approach, which improves accuracy
while preserving inference latency. Conventionally, we initialize
each layer of a classification model with parameters from the same
pre-trained model. In our Lightweight Model Ensemble approach,
we initialize encoder layers of the action item detection model ¢
using parameters from one pre-trained model 64 and initialize the



pooler layer of 8¢ using the pooler layer parameters from another
pre-trained model 6. We then fine-tune ¢ with the cross-entropy
loss on the meeting corpus. In this way, we integrate knowledge
from different pre-trained models efficiently, without increasing the
overall number of parameters and slowing down inference.

4. EXPERIMENTS

4.1. Datasets and Metrics

We use both the AMI meeting corpus and our AMC-A corpus. We
partition the AMI meeting corpus following the official scenario-
only dataset partitioninﬂ We partition AMC-A into train/dev/test
sets with a ratio of 70:15:15, respectively. Considering the sparsity
of positive samples, we report positive F; as the evaluation metric.
4.2. Baseline and Implementation Details

To evaluate our proposed methods on the AMC-A and AMI datasets,
we use the following strong baseline pre-trained models, namely,
BERT [6 RoBERTa [12]], StructBERT [16ﬂ and Longformer [17]]
which provides efficient long-sequence modeling. For RoBERTa,
We use the pre-trained Chinese RoBERTa-wwm-ext model[lSﬂ
For Longformer, we use the pre-trained Erlangshen-Longformer-
110M[19 to model action item detection as a sequence labeling
task and use a fixed sliding window with size 4096 and allow one
sentence overlap. The sentence labeling task takes multiple sen-
tences as input and outputs the probabilities for every sentence. For
BERT, StructBERT, and RoBERTa, we model action item detection
as a sentence classification task and truncate input to 128 tokens.
The sentence classification task takes a sentence as input and outputs
the probabilities for the sentence. We compare our Context-Drop
approach to R-Drop [15]. R-Drop forces the predicted probability
distribution of the same sample after two dropouts to be as close as
possible. We compare the performance of R-Drop with sentence-
level inputs and context-level inputs (Figure 2).

We use TensorFlow and PyTorch to implement all models. All
PLMs used are of BERT base size. The batch size is 32 and the
dropout rate is 0.3. For each experiment in this paper, we run 5
times with different random seeds; for each run, we conduct a grid
search among {le — 5,2¢ — 5} learning rate and {2, 3} epochs on
the dev set. We then report the mean and standard deviation of the
best results from 5 runs. The weight a of KL divergence loss is set
to 4.0 for R-Drop and 1.0 for Context-Drop by optimizing positive
F1 on the dev set. For each sentence, we use its preceding sentence
and following sentence as local context, and select the top-2 most
similar sentences to this sentence as global context (see Section [3.1]
for details). The probability to keep contextual sentences is 50%
for local or global contexts, and 70% for local & global contexts.
Following setups in prior works, no sampling methods are applied.
4.3. Results and Analysis
As shown in Table 2] we compare different PLMs with different
modeling tasks. When modeling action item detection as a sen-
tence classification task, StructBERT outperforms BERT with a re-
markable gain of +3.08 on positive F;. The word structural pre-
training objective of StructBERT reconstructs tokens in the correct
order from the shuffled trigrams. This could improve its robust-
ness to disordered sentences, which is quite common in spoken lan-
guages, and in turn improve its performance of meeting action item

3https://groups.inf.ed.ac.uk/ami/corpus/
datasets.shtml
“https://github.com/google-research/bert
Shttps://modelscope.cn/models/damo/nlp_
structbert_backbone_base_std
%https://github.com/ymcui/Chinese-BERT-wwnm
"https://github.com/IDEA-CCNL/Fengshenbang-LM

detection. We formulate action item detection as a sequence labeling
task to exploit the advantage of Longformer in long-sequence mod-
eling. However, we only observe limited improvement from Long-
former over BERT, 0.59 gain on positive F;. Therefore, we formu-
late action item detection as a sentence classification task and use
StructBERT as the pre-trained model for evaluating Context-Drop.

As shown in Table [3] based on the baseline StructBERT, we
compare various contrastive learning methods using different con-
texts (Figure 2). On AMC-A, when not using contrastive learning
methods, i.e., no w/ R-Drop nor w/ Context-Drop, the baseline using
both local and global context performs the best (69.09), followed by
the baseline using the local context (68.50). We observe the same
trend on AMI. This indicates that adjacent contextual sentences do
provide useful information. Global context provides complementary
information and a combination of global and local context achieves
further improvement. On AMC-A, when using different contrastive
learning methods, the configuration of using the focus sentence and
local & global context as input with Context-Dropy i achieves the
best performance (70.82), outperforming the baseline using the sen-
tence as input without contrastive learning (67.84) by +2.98 absolute
on positive Fq, and also outperforming R-Drop (68.72) by +2.10 ab-
solute gain. On AMI, sentence+local context w/ Context-Drop,.
(43.12) also outperforms the baseline sentence input (38.67) and R-
Drop (42.72). These results confirm our hypothesis that Context-
Drop could help the model to focus more on the current sentence,
exploit relevant information in context and be less distracted by ir-
relevant information. Moreover, a reduction in the standard devi-
ations shows that Context-Drop improves the stability and robust-
ness of the model. For different contexts, Context-Dropy,,m,. out-
performs Context-Dropg, ., in most cases, which suggests that the
flexible and dynamic contrastive learning method can achieve better
performance.

We also conduct ablation analysis on Context-Drop, as in the
second group of Table 3] Without the regularization loss of KL
divergence (denoted KL loss), Context-Drop can be regarded as
a data augmentation method using fixed or dynamically selected
context. On AMC-A and AMI, for both Context-Drop,, 4 and
Context-Dropy,,mi.» W/0 KL loss degrades the performance, which
indicates contrastive learning is important for gains. With the regu-
larization loss, the model could better focus on the current sentence
and be less distracted by irrelevant information in context.

As shown in Table[d we compare the performance of applying
Lightweight Model Ensemble integrating various pre-trained mod-
els using the sentence input. StructBERT encoder with RoOBERTa
pooler layer parameters achieves +0.52 absolute gain and RoOBERTa
encoder with StructBERT pooler layer parameters achieves +0.38
absolute gain. These results show that Lightweight Model Ensemble
could integrate knowledge from different models and achieve better
performance without increasing the overall number of parameters.

5. CONCLUSION

We construct and make available the first Chinese meeting corpus
with action item annotations, to alleviate the scarcity of resources
and prompt research on meeting action item detection. We propose
Context-Drop to exploit both local and global contexts with regular-
ization. On both our meeting corpus and English AMI meeting cor-
pus, Context-Drop improves the accuracy and robustness of action
item detection. We also propose Lightweight Model Ensemble and
achieve improvement. In future work, we plan to refine Lightweight
Model Ensemble and investigate its efficacy on other tasks as well
as combining Context-Drop and Lightweight Model Ensemble.
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