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ABSTRACT

End-to-End (E2E) automatic speech recognition (ASR) systems
used in voice assistants often have difficulties recognizing infre-
quent words personalized to the user, such as names and places.
Rare words often have non-trivial pronunciations, and in such cases,
human knowledge in the form of a pronunciation lexicon can be
useful. We propose a PROnunCiation-aware conTextual adaptER
(PROCTER) that dynamically injects lexicon knowledge into an
RNN-T model by adding a phonemic embedding along with a tex-
tual embedding. The experimental results show that the proposed
PROCTER architecture outperforms the baseline RNN-T model
by improving the word error rate (WER) by 44% and 57% when
measured on personalized entities and personalized rare entities,
respectively, while increasing the model size (number of trainable
parameters) by only 1%. Furthermore, when evaluated in a zero-
shot setting to recognize personalized device names, we observe 7%
WER improvement with PROCTER, as compared to only 1% WER
improvement with text-only contextual attention.

Index Terms— speech recognition, personalization, pronuncia-
tion, neural transducer, RNN-T, contextual biasing, attention

1. INTRODUCTION

End-to-end (E2E) ASR systems [1–4] have achieved significant
WER improvements over traditional hybrid systems. However, they
often have difficulty in correctly recognizing words that appear in-
frequently in the training data. Entity lists personalized to specific
users (e.g., personalized entity lists or user-defined personalized
device names) can help improve ASR accuracy for virtual voice
assistants.

There has been much recent prior work to improve recognition
of rare words for E2E ASR systems by incorporating additional con-
textual information [5–17]. The contextual information is ingested
either post-training (e.g., by shallow fusion [15, 18] and on-the-fly
rescoring [19–21]) or during training (e.g., with contextual adapters
[6]). However, the efficacy of the post-training method is limited
due to lack of joint training with the core recognition components,
making these approaches sensitive to heuristics used for tuning their
rescoring weights. In contextual adapter approaches, however, con-
text is directly and jointly used as part of the recognition (e.g., RNN-
T) model to improve the E2E ASR loss.

Most prior work leverages only the textual representation when
incorporating contextual information. However, given that contexts

∗Work done as an applied scientist intern at Amazon Alexa.
†Contributed equally.

Fig. 1. Architecture of PROCTER.

like personalized entities are infrequent during training and often
have multiple pronunciations, the E2E ASR model can get confused
by similar textual contexts. For example, “Jana” has a pronunci-
ation “Yana” that is not evident from the graphemes (in English).
Thus, adding pronunciation information would make it easier for the
model to align the entity “Jana” to the input audio, and hence infer
the correct output. There is little prior work that utilizes phonemic
representations of context, via a simple additive attention mecha-
nism [7, 22] that is specific to the LAS [1] E2E architecture.

In this paper, we propose a jointly-trained contextualiza-
tion adapter for the RNN-T model by incorporating both textual
(graphemic) and phonemic representations of context to create a
pronunciation-aware contextual adapter (PROCTER). First, given
the contextual entities, we encode its grapheme and phoneme rep-
resentation to get the grapheme and phoneme embeddings, respec-
tively. Then, they are used to bias the intermediate outputs from
the audio encoder of the RNN-T model to fuse the contextual in-
formation using the PROCTER biasing adapter before passing it to
the joint network of RNN-T. In contrast to previous approaches that
select one pronunciation per contextual entity [7,22], we preserve all
pronunciations by considering them as separate entities and dupli-
cate the corresponding textual representation in multiple grapheme-
phoneme pairs. Additionally, unlike the attention mechanism used
in prior work [7], our adapter biases the audio encoder outputs with
contextual information using a more optimized scaled dot-product
attention [23]. Prior work has shown that the output corresponding
to the last layer of the audio encoder in E2E ASR models has less
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Fig. 2. Proposed PROCTER biasing adapter
phonemic information since ASR is optimized to output the correct
graphemes irrespective of phonemic variations [24, 25]. Thus, in-
stead of letting only the last layer attend to contextual entities [6, 7],
we also bias earlier layers with our phonemic embeddings. Provid-
ing phonemic context allows the biasing network to pay attention to
idiosyncratic pronunciation variants. Moreover, allowing multiple
grapheme-phoneme pairs lets the model attend to the best-matching
pronunciation of a context item. We train the model in adapter style,
freezing the rest of the RNN-T model with weights from pretraining.
Thus, it requires a small fraction of the data and time needed for full
training. To demonstrate the performance of our proposed model,
we compared PROCTER with a state-of-art model (i.e., a text-only)
contextual adapter model [5, 6]) on three in-house far-field datasets.

2. PRIOR WORK

2.1. Neural Transducer

The recurrent neural transducer (RNN-T) is widely used as an E2E
ASR streaming model. The grey blocks in Figure 1 represent the
streaming RNN-T ASR system, which has three main components:
an audio encoder, a prediction network, and a joint network.

The audio encoder typically consists of stacked LSTM layers
[3]. It generates the high-level audio encoding representations henc

t

given the input audio frames x0,t = (x0, ..., xt). The prediction
network also uses stacked LSTM layers to encode the last nonblank
word pieces y0,u−1 = (y0, ..., yu−1), and generate hpre

u . The joint
network takes the output from both audio encoder henc

t and predic-
tion network hpre

u . It fuses the two outputs before passing them to a
series of dense layers (denoted by φ). Finally, a softmax operation
is applied to obtain the probability distribution over word pieces.
Equation 1 shows that RNN-T outputs probability at time t given a
sequence u.

hjoint
t,u = φ(JoinOp(henc

t , hpre
u ))

P (yu | t, u) = softmax(hjoint
t,u )

(1)

2.2. Contextual adapters

Contextual adapters have been shown effective in adapting pre-
trained RNN-T model for the recognition of contextual entities,
achieving up to 31% relative word error rate reduction (WERR)
compared to the vanilla RNN-T model [5, 6]. The biasing network
has two main components—a catalog encoder and a biasing adapter.

The catalog encoder embeds a catalog of contextual entitiesC =
c1, c2, ..., cK . It takes the graphemic (textual) representation of cat-
alog entities as input, passing them to a subword tokenizer [26],
followed by a stack of BiLSTM layers. The last state of the BiL-
STM is used as the embedding of a contextual entity, which is an
encoded representation ce. Given a catalog with K entities, and the
generated entity embedding size of D, the catalog encoder outputs
Ce ∈ RK×D as follows:

cei = BiLSTM(Embedding(ci)) (2)

The biasing adapter transforms an intermediate representation
computed by the RNN-T, such as the audio encoder output (henc

t ),
using the graphemic entity embeddings from the personalized cat-
alog. It uses a cross-attention-based biasing adapter to attend over
all entity embeddings Ce (key and value) based on henc

t as the in-
put query. The attention scores αi for each catalog entity are calcu-
lated using the scaled dot-product attention mechanism [23]. The bi-
ased intermediate representation (bias vector) is calculated as benc

t =∑K
i αiW

vcei . Finally, the intermediate representations are updated
with the bias vector using element-wise addition. Thus, the contex-
tual audio encoding (ĥenc

t ) that contains the biased representation is
calculated as ĥenc

t = henc
t ⊕ benc

t .
One major shortcoming in designing the contextual adapters is

its heavy reliance on the textual representation of the catalog en-
tities. While the contextual adapter can learn to effectively repre-
sent rare catalog entities, it struggles to encode entities with uncom-
mon pronunciation. Prior work [7, 27] showed that the phonemic
representation of such rare entities can be compared more effec-
tively to grapheme-only representations in the case of a contextual
LAS model [8]. These findings motivate combining phonemic and
graphemic representations within contextual adapters to improve ac-
curacy on rare entities.

3. PROCTER

The proposed PROCTER model takes as input the phonemic rep-
resentation of catalog entities in addition to its textual grapheme
representation. Figure 1 shows the overview of the architecture. It
has three components: phoneme encoder, grapheme encoder, and
PROCTER biasing adapter. The objective of PROCTER is to learn
the phonemic variations of catalog entity representations such that
it improves the biasing of intermediate audio encodings for the con-
textual catalog entities with nonstandard pronunciations.

3.1. Phoneme Encoder

The phoneme encoder embeds the pronunciation representation of
entities in the catalog. The pronunciation information is retrieved
from the dictionary. Same-text entities can have multiple pronun-
ciations, which are all preserved as separate entities for biasing the
intermediate output representation. Let P = [p1, p2, ..., pM ] de-
note all pronunciations (phoneme sequences) of catalog entitiesC =
[c1, c2, ...., cK ] where M ≥ K. The phoneme encoder embeds
the phoneme sequences using an embedding lookup, followed by a
stack of BiLSTM layers. With M pronunciations and an embedding
size of Dp, the phoneme encoder outputs P emb ∈ RM×Dp where
pemb
m ⊂ P emb is the phoneme embedding of pronunciation pm, cal-

culated as

pemb
j = BiLSTM(Embedding(pj)) .

We also add a no bias token to the pronunciation catalog for dis-
abling adapter biasing, similar to prior work [5, 7].



3.2. Grapheme Encoder

Our grapheme encoder is similar to the catalog encoder described
in Section 2.2. It encodes the grapheme representation G =
[g1, g2, ..., gK ] of catalog entities C = [c1, c2, ...., cK ] using Equa-
tion 2. The grapheme encoder also duplicates the output grapheme
embeddings for the entities with more than one pronunciation to
match up with the phoneme embeddings for the various pronunci-
ations of a given entity. Hence, given a total of M pronunciations
and grapheme embedding size Dg , the grapheme encoder outputs
Gemb ∈ RM×Dg where gemb

m ⊂ Gemb is the grapheme embedding
of the textual representation in the catalog with pm as one of its
pronunciations.

3.3. PROCTER Biasing Adapter

The proposed PROCTER biasing adapter adapts an intermediate rep-
resentation from the audio encoder with both textual and pronuncia-
tion representations of contextual catalog entities, as shown in Fig-
ure 2. It is based on cross-attention using the scaled dot-product [23].
The cross-attention module of the proposed adapter takes three in-
puts: query, key, and value.

Query: The query comes from the intermediate layer output
of the pretrained audio encoder. Instead of using only the final
layer output, we also include intermediate layer outputs earlier in
the pretrained RNN-T audio encoder. More specifically, we uti-
lize the outputs corresponding to the last, third-last, and fifth-last
LSTM layers. We compute weighted addition of these encoder out-
puts as a gating mechanism. Given the intermediate layer outputs
{hencl

t , hencl−2

t , hencl−4

t }, we use a dense layer to project the con-
catenated intermediate layer outputs to a 3 dimensional vector for
weights [wl

t, w
l−2
t , wl−4

t ]. And these weights are used to calculate
the final weighted sum of encoder output hqry

t , which is used as the
query to the scaled dot-product attention as shown in Figure 2.

henccat

t = Concat({hencl
t , hencl−2

t , hencl−4

t })

[wl
t, w

l−2
t , wl−4

t ] = Softmax(Dense(henccat

t ))

hqry
t =

∑
i∈{l,l−2,l−4}

wi
th

enci
t

(3)

Key: The key is used to compute the attention score based on
the provided query. We use both textual and pronunciation rep-
resentations coming from the grapheme and phoneme encoders,
respectively, as the key. Since we have a one-to-one mapping of
corresponding phoneme and grapheme embeddings, we concate-
nate them to obtain the final embedding for the key. For each
catalog grapheme-phoneme embedding pair gemb

m and pemb
m where

m ∈ 1, . . . ,M , we compute the input to key ckey
m as

ckey
m = Concat(gemb

m , pemb
m ) (4)

Thus, the key for all grapheme-phoneme embedding pairs becomes
Ckey = [ckey

1 , c
key
2 , ..., c

key
M ].

Value: The value is used to bias the query with the computed
attention weights. Since the biased vector passed to the joint network
of RNN-T is expected to contain only textual information, we use the
textual representation gemb

m as the value.
We compute an attention score αi based on the weighted sum

of intermediate encoder outputs (Eqn. 3) as query and concatenated
grapheme-phoneme representations of all catalog entities as the key:

αi = Softmaxi

(
W qhqry

t ·
(
W kCkey

)T
√
d

)
(5)

The final bias vector benc
t is calculated as benc

t =
∑K

i αiW
vgemb

i .
Finally, similar to [5], the intermediate representations are fused with
the contextual bias vector using element-wise addition. Thus, the
contextual audio encoding (ĥenc

t ) that contains the biasing contextual
representation is calculated as ĥenc

t = henc
t ⊕ benc

t .
The intuition behind the proposed PROCTER strategy is to learn

better attention weights by including the phonemic representation of
the catalog entities. Moreover, to better index into the phonemic
representation, we also include the intermediate layer outputs of the
pretrained audio encoder to capture acoustic-phonetic variations in
the audio inputs.

4. EXPERIMENTS

4.1. Dataset and Evaluation

We use in-house de-identified far-field datasets coming from inter-
actions with a virtual voice assistant. The training data consists of
text-audio pairs of utterances randomly sampled from more than 20
domains such as Communications, Weather, SmartHome, and Mu-
sic. The baseline RNN-T model was trained using 114k hours of
data. However, following the work in [5, 6], the attention compo-
nents in PROCTER are trained using a fine-tuning step where the
core components of RNN-T (encoder, prediction) are kept frozen.
For training the adapter, we use much less, ∼ 290 hours of data.
Personalized entities from real users are used as context informa-
tion. We test the model on three test sets: 1) 16k utterances of far-
field English data, 2) 29k utterances of far-field English data, which
includes mentions of the personalized entities, 3) 3558 utterances of
data containing mentions of personalized device names. We report
the WERR on all three test sets, as well as the relative named-entity
WER reduction (NE-WERR) of personalized entities and personal-
ized device names, respectively, on the second and third test sets.
For the second test set, we further compute the NE-WERR of rare
personalized entities (those appearing only once in the test set), to
specifically measure performance on infrequent words.

4.2. Experimental Setup

Pretrained RNN-T model. We use the RNN-T model described in
Section 2.1. The input is a 64-dim LFBE feature for every 10 ms of
audio, with a window size of 25 ms, with three frames stacked to-
gether resulting in 192 features per frame. Each ground truth text to-
ken is passed through a 4000 word-piece tokenizer [26]. The RNN-T
audio encoder consists of 8 LSTM layers with 1280 units per layer.
The prediction network consists of 2 LSTM layers with 1280 units
per layer. The joint network consists of a dense layer of 512 units,
followed by a softmax activation over RNN-T output tokens. The
decoding is performed using the standard beam search with a beam
size of 8. The output vocabulary consists of 4000 word pieces.
PROCTER configuration. The phoneme sequences of contextual
entities are generated from a lexicon. A text can have multiple
pronunciations, and we found it important to keep all phoneme se-
quences. The grapheme and phoneme encoders consist of BiLSTMs
with 64 and 128 units, respectively. The PROCTER biasing adapter
projects the query, key, and value to 128 dimensions with attention
weights. The maximum number of contextual entities is set to 300.
For the PROCTER-based experiments, we further divide the full
personalized entities or personalized device names into individual
words. The words are duplicated based on their number of pronun-
ciations in the lexicon file for a one-to-one correspondence during



Table 1. Results. Relative change in WER (WERR), and NE-WER (NE-WERR) over vanilla RNN-T models for various models. The rare
personalized entities appear only once, and personalized device name test set shows the zero-shot capability of the model.

Model Phoneme Int-Layers General Personalized Entity Personalized Device Name
Overall All Entities Rare Entities Overall Personalized Device Names

key value WERR WERR NE-WERR WERR NE-WERR
Text-only adapter N N N 0.0% 32.5% 37.1% 50.0% 1.1% 0.9%
PROCTER Y N Y 0.2% 38.2% 43.9% 57.2% 2.6% 6.9%
PROCTER+Ph-in-value Y Y Y 0.2% 38.2% 43.2% 55.1% 1.3% 5.3%
PROCTER+No-Int-Layers Y N N 1.0% 38.2% 43.6% 57.1% 0.2% 3.9%
PROCTER+Ph-in-value+No-Int-Layers Y Y N 0.2% 37.6% 43.0% 54.6% 0.0% 4.8%

concatenation. We keep a maximum size of 600 for these phoneme-
grapheme pairs. For training the PROCTER, we use the Adam
optimizer with a learning rate of 5 × 10−4 configured to converge
with early stopping. The number of trainable adapter parameters is
1.5M, or about 1% of the RNN-T.
Experiment setup. The primary baseline model is a vanilla RNN-T
model without personalization described in Section 2.1. We compare
the proposed PROCTER adapter to four additional model configura-
tions: 1) Text-only adapter: Contextual adapter proposed in [5] us-
ing only text representations of context entities; 2) PROCTER + Ph-
in-value: PROCTER with the value embeddings created the same
way as the keys (Equation 4). This experiment assesses the effect of
using phonemic information in the final contextual embedding that
is passed into the joint network; 3) PROCTER + No-Int-Layers:
PROCTER with the queries defined using the final layer output of the
pretrained audio encoder (as opposed to using the weighted sum of
intermediate outputs). This ablation study examines the importance
of information from intermediate audio encoder layers when attend-
ing to the contextual embeddings; 4) PROCTER + Ph-in-value +
No-Int-Layers: Combination of variants (2) and (3).

5. RESULTS

Table 1 shows the results relative to the vanilla RNN-T model on
all three test sets. Given the general test set with no personalized
context, we observe that the previous text-only adapter, proposed
PROCTER, and all ablation experiments have no degradation over
the baseline RNN-T model. It shows that the contextual adapters are
immune to the performance of general ASR. For the personalized
entity test set, in terms of overall WERR, we observe that all the
experiments significantly improved over the vanilla RNN-T, which
shows the effectiveness of contextual adapters. However, we see a
gain when we introduce the phonemic context representation com-
pared to the text-only adapter (38.2% vs. 32.5%). Furthermore, the
performance gain increases compared to the text-only adapter as the
sparsity of context increases, as seen in the NE-WERR of all per-
sonalized entities and rare personalized entities (43.9% & 57.2% vs.
37.1% & 50%). Although all the ablation experiments perform sim-
ilarly to the PROCTER model in overall WERR and NE-WERR for
all personalized entities, we see a performance gain for PROCTER
on rare personalized entities over the first and third ablation exper-
iments (57.2% vs. 55.1% and 54.6%). This shows the importance
of not passing the phoneme information to the joint network of the
RNN-T model.

Additionally, we test the zero-shot capability of PROCTER. We
test the personalized device name test set with personalized device
names as context, with all the experiments trained with personalized
entities for contextualization. Since the context domain differed,
we did not see much improvement over the vanilla RNN-T model.

However, we observe the highest performance gain by PROCTER in
terms of overall WERR and personalized device name NE-WERR.
In particular, we achieved 6.9% NE-WERR of the personalized de-
vice name context compared to 1.0% with text-only adapter. More-
over, we also observe better performance of PROCTER with the sec-
ond ablation experiment. Therefore, when the sparsity of context is
at the maximum, it is essential to include the intermediate layer au-
dio encoder outputs for better contextualization.

Finally, to demonstrate the learning of phonemic context repre-
sentation, Figure 3 shows an example (the personalized entity was
altered to protect privacy) where the PROCTER model identifies the
correct entity while the text-only adapter fails. Text-only adapter
attends to another textually similar personalized entity, ‘baden’, for
the audio frames corresponding to ‘biden’, leading to an incorrect
hypothesis, “call joe baden”. However, the PROCTER model, with
access to the pronunciations of personalized entities ‘biden’ and
‘baden’, identifies the context ‘biden’ to arrive at the correct ASR
hypothesis.

(a) text-only adapter

(b) PROCTER
Fig. 3. Attention visualization

6. CONCLUSION

We proposed PROCTER, a pronunciation-aware contextual adapter
for a vanilla RNN-T model for improving the recognition of rare
words. It fuses the pronunciation representations with the textual
representations of context words via scaled dot-product attention.
PROCTER is trained in adapter style with only 1% of the trainable
parameters of a vanilla RNN-T model. As a result, we observe over
57% improvement compared to the baseline RNN-T model on rare
personalized entities and up to 7% improvement in zero-shot testing
on a personalized device name test set. Although PROCTER relies
on a dictionary for pronunciations, we found less than 0.5% of con-
texts lacking pronunciation information. In the future, we plan to use
a neural grapheme-to-phoneme model for those rare cases. We also
plan to try applying PROCTER-style biasing on decoder outputs in
addition to audio encoder outputs.
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