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ABSTRACT

Ultrasound imaging is an attractive imaging modality due
to its low-cost and real-time feedback, although it often
falls short in image quality compared to MRI and CT imag-
ing. Conventional ultrasound image reconstruction, such as
Delay-and-Sum beamforming, is derived from maximum-
likelihood estimation. As such, no prior information is ex-
ploited in the image formation process, which limits potential
image quality. Maximum-a-posteriori (MAP) beamforming
aims to overcome this issue, but often relies on rough approx-
imations of the underlying signal statistics. Deep learning
based reconstruction methods have demonstrated impressive
results over the past years, but often lack interpretability and
require vast amounts of data.

In this work we present a neural MAP beamforming tech-
nique, which efficiently combines deep learning in the MAP
beamforming framework. We show that this model-based
deep learning approach can achieve high-quality imaging, im-
proving over the state-of-the-art, without compromising the
real-time abilities of ultrasound imaging.

Index Terms— Ultrasound, Beamforming, Deep-Learning,
Probabilistic modelling

1. INTRODUCTION

Ultrasound imaging is a cost-effective, portable and highly
interactive imaging modality that allows visualisation of soft
tissue and blood flow inside the body, while being low risk
due to the absence of ionizing radiation. As a result ultra-
sound is used in many medical specialties and different stages
of medical treatment, from initial diagnostics, to planning

This work was supported in part by the Dutch Research Council (NWO)
and Philips Research through the research programme “High Tech Systems
and Materials (HTSM)” under Project 17144, the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
program (grant No. 101000967), and the Israel Science Foundation (grant
No. 536/22).

of procedures, monitoring of interventions, and treatment
follow-up.

During signal acquisition, an ultrasound transducer is
used to transmit and receive acoustic waves. In B-mode
(brightness mode) imaging, the received time-domain signals
are transformed into a spatial mapping (i.e. beamforming),
such that an image of the acoustic reflectivity of the insonified
tissue can be reconstructed. Although this signal processing
has traditionally been implemented in hardware, a contempo-
rary approach involves the use of software-based processing.
This alternative methodology affords the implementation of
more complex and adaptive algorithms, yet incurs a substan-
tial computational cost.

The majority of conventional beamforming methods, such
as Delay-and-Sum (DAS) [1] or Minimum-Variance (MV) [2,
3], do not exploit prior information about the distribution of
the underlying tissue reflectivity, which limits achievable im-
age quality. For comparison, incorporating such prior infor-
mation is standard in high-quality MRI and CT image recon-
struction. Few ultrasound reconstruction methods exist that
do exploit prior information, but typically assume very sim-
plified signal models (e.g. independent Gaussians per pixel)
[4, 5]. Alternatively, several methods have been proposed
that exploit more complex signal structures, however these
are often prohibitively slow and complex for real-time imag-
ing [6, 7, 8].

Here we present a novel approach, neural MAP beam-
forming, which is derived from probabilistic modelling of the
beamforming process. Neural MAP provides a way to replace
critical parts of MAP estimation by learning them through
model-based neural networks [9, 10], aiming to achieve high
image quality with a low computational cost. We will first
provide an overview of conventional ML and MAP beam-
forming methods, after which we will detail on the presented
neural MAP beamformer. We compare our method with DAS
and a deep learning based beamformer [11, 12], and evaluate
Peak Signal to Noise Ratio (PSNR) based on varying levels
of input noise.IC
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2. BACKGROUND

2.1. Maximum-Likelihood Beamforming

Many classical beamforming methods can be derived from the
narrowband linear measurement model with additive noise
given by

y = aθx+ n, (1)

where y ∈ RL is a vector of L channel signals, x is the tissue
reflectivity, aθ ∈ RL is a steering vector and n ∈ RL addi-
tive noise. Note that the model above assumes independent
sources x (i.e. each pixel is independent), as is typical as-
sumed in beamforming setups. In the broadband pulse-echo
ultrasound imaging setting, we first perform a TOF-correction
(time-alignment). As a result, the steering vector then simpli-
fies to aθ = 1.

In beamforming we aim to find the most likely candidate
x̂ (per pixel) that explains our measurements y. Without a
prior on x, i.e. x is assumed to be a deterministic variable
with random noise, we can find the ML estimator. As such
we aim to maximize the probability p(y|x). Maximizing the
log-likelihood, or equivalently minimizing the negative log-
likelihood, yields

argmax
x

log p(x|y) = argmin
x

(y−1x)TC−1(y−1x), (2)

where C is the noise covariance matrix. This estimator as-
sumes independent sources (pixels in the ultrasound setup),
ignoring the strong dependency between pixels in images. We
will show in later sections that we can go beyond this, and in-
clude spatial information in our estimator.

Standard Delay-and-Sum beamforming can be derived
from the ML estimate for x under the assumption of Gaus-
sian noise, where n ∼ N(0, σ2I) and p(y|x) ∼ N(1x, σ2I).
From (2) we can then derive the closed-form solution

x̂ =
1

L
1Ty. (3)

Here, L denotes the number of array elements. Simply put,
this corresponds to taking the mean over the individual chan-
nel signals for every pixel or focus point.

For colored noise n ∼ N(0,C−1), the ML solution cor-
responds to the weighed sum

x̂ = (1TC−11)−11TC−1y = wT
MVy, (4)

where wT
MV is a vector of (adaptive) apodization weights.

This is also known as Minimum Variance beamforming [2, 3].
Generally speaking, the noise covariance is not known, and
is estimated from data following E[yyT ]. However, this pro-
cess is error prone, which can strongly affect image quality
and may yield an unstable matrix inversion. To overcome
these instability issues, several methods have been suggested
(e.g. spatial smoothing) [3], however these add computational
overhead and can compromise resolution.

2.2. Maximum-a-Posterori Beamforming

If we have a prior p(x), we can maximize the posterior prob-
ability

p(x|y) ∼ p(y|x)p(x), (5)

which yields the maximum-a-posteriori (MAP) estimate. We
can include this prior knowledge on the distribution of x by
adding a regularization term to (2) such that

argmax
x

log p(x|y) = (y − 1x)TC−1(y − 1x)− log p(x).

(6)
For x ∼ N(0, σ2

xI), and under the same likelihood model as
(3) and (4), the general solution is given by

x̂ =
σ2
x

σ2
x +wT

MVCwMV
wT

MVy (7)

which is known as Wiener beamforming [4]. This general
case equates to a postfilter (scaling) of the MV beamformer
derived in (4). Similarly, an iterative solution to MAP beam-
forming, iMAP [5], was proposed by Chernyakova et al.,
which aims to improve the reconstruction of x by iterating on
(7). In iMAP both x and n are assumed to be white Gaussian
variables, where the noise power is estimated through

{σ̂2
x, σ̂

2
n}(t) =

{
x̂2
t ,

1

L
||y − x̂(t)1||2

}
. (8)

However, for many relevant prior distributions, the MAP
estimator has no closed form solution. Instead, the MAP esti-
mators are typically obtained through iterative methods, such
as proximal gradient descent. Proximal gradient descent al-
ternates between a data-consistency (DC) step, which is based
on the data likelihood model, followed by a prior (proximal)
step. In the context of beamforming, we propose to write each
iteration k as:

x̃k+1 = xk + 2µ1TC−1(y − 1xk) (9)
x̂k+1 = Prox(x̃k+1) (10)

where Prox(·) denotes the proximal operator operating on the
beamformed image domain, and µ is a step size for the gradi-
ent of (4).

3. NEURAL MAP BEAMFORMING

Like in MV and Wiener beamforming, direct implementation
of (9) requires estimation of the signal statistics for each pixel,
i.e. the inverse covariance matrix. In neural MAP beamform-
ing we propose to circumvent this slow and often unstable
procedure by learning parts of the DC step with neural net-
works. Furthermore, to model the proximal operators of more
complex/rich prior distributions we propose to use neural net-
works in the proximal step (10). As a general case we can
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Fig. 1. (Left) Schematic overview of neural MAP beamforming, comprising a fixed number of DC and prior steps. On the right
a detailed diagram of the DC step is given, which inherits its structure from adaptive beamforming.

write this as

x̃k+1 = xk + fθ,k(xk,y) (11)
x̂k+1 = gθ,k(xk,y) (12)

where θ constitutes the trainable weights. This iterative pro-
cess can then be unfolded [13] into a forward neural net-
work comprising K folds (iterations) of alternating DC and
prior steps, to yield a fixed complexity model. A schematic
overview of this is given in Figure 1. In the following sections
we will detail on the specific architectures of fθ and gθ.

3.1. Data-consistency step

For the DC step we use the approach presented in [11] [12],
which provides a model-based deep learning approach to
adaptive beamforming (ABLE), such that

x̂ABLE = hθ(y)y (13)

where hθ(·) is a fully connected neural network that predicts
a set of adaptive apodization weights. This can be seen as
an approximation to the MV estimator in (4), where wMV ≈
hθ(y). Similarly, in neural MAP we estimate (11) through

x̃k+1 = x̂k + hθ,k(y)(y − 1xk), (14)

multiplying the residual y − 1xk with a set of content adap-
tive apodization weights. Note that for a single DC step, and
initializing x0 = 0, this is equivalent to (13).

To extend the field of view, we implement hθ(·) as a
2D convolutional network comprising 4 convolutional layers,
with a kernel size of 3× 3. We set the number of filters in the
first and the last layer to 128, corresponding the the number
of array elements in our data, and introduce a latent space of
only 32 filters for the inner layers. Between each convolu-
tional layer, an Antirectifier activation was used, as in [12].
In this work we consider 4 folds (K = 4) which do not share
network weights, such that each instance hθ,k is optimized
for update step k.

3.2. Proximal step

Assuming sparsity, a commonly used proximal step is the
soft-thresholding operator:

x̂k+1 = Tλ(x̃k+1) (15)

with threshold parameter λ. In the context of specific applica-
tions, such as ultrasound-localization microscopy (the detec-
tion of sparsely distributed microbubbles), such a prior was
shown appropriate [14]. However, in general, the probability
density function describing ultrasound images is complex and
strongly entangled across pixels. Deriving an explicit proxi-
mal step is therefore non-trivial.

We therefore instead consider learning a general non-
linear transformation function F which transforms the beam-
formed images to a sparse domain. Following the approach
by Zhang et al. [15], we define a function F(·), and its inverse
F̃(·) which map x to and from a sparse domain, such that

x̂k = F̃(Tλ(F(x̃k))). (16)

We can learn such a mapping from data by approximating
this with a neural network Fθ,k(·) and F̃θ,k(·). To promote
symmetry between these transformations, (Fθ,k ◦ Fθ,k ≈ I),
we apply a symmetry loss during training defined as

L = ||x− F̃θ,k(Fθ,k(x))||22 (17)

In this work, Fθ,k and F̃θ,k comprise two 2D convolutional
layers with 11×11 kernels, a filter size of 2, and Antirectifier
activation.

3.3. Training details

For training, a dataset of in-vivo ultrasound images was ac-
quired using the Vantage system (Verasonics Inc., WA, USA)
with a linear probe comprising 128 array elements (L11-4v),
and a center frequency of 6.25 MHz. A total of 810 images
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Fig. 2. (a) In-vivo carotid artery cross-section (top), and longitudinal cross-section (bottom) for DAS, ABLE and neuralMAP,
with noise added to the input (5dB SNR). MV images, without noise, are included in the left column as a ground truth.
(b) PSNR plotted against input SNR level. The red line indicates the SNR of the images in (a).

were used for training, acquired at 11 equispaced plane wave
(PW) angles between -18 and 18 degrees. As an input to
our model, we provide only the RF data of a single (cen-
ter) PW angle. However, the multi-angle acquisitions were
used to generate high-quality training targets by means of MV
beamforming following the method described in [12]. Neural
MAP was implemented in Tensorflow (Google, CA, USA),
and trained on a GPU workstation with an Nvidia RTX 3080
Ti. The training loss was calculated using the signed-mean-
square-logarithmic-error, first proposed in [11], which works
well for high-dynamic range, modulated data, such as ultra-
sound RF signals.

4. RESULTS AND DISCUSSION

After training neural MAP on in-vivo data for 100 epochs, we
tested the model on a separately acquired in-vivo dataset. We
compared neural MAP against DAS (reference) and ABLE
(state-of-the-art). To evaluate robustness under the influence
of noise, we added white Gaussian noise to the input, such
that we achieved an SNR ranging from 0dB to 20dB com-
pared to the original signal. The image reconstructions for
each method are visualized in Fig. 2a, for an SNR of 5dB.
As a reference, the MV beamformed images were included,
corresponding to our training targets. In Fig. 2b we plot the
PSNR of each method for different levels of input noise cal-
culated over the test set. Note that ABLE and neural MAP

were only trained on the original uncorrupted inputs, and not
optimized for each noise level.

A significant improvement in contrast and resolution can
be seen in both ABLE and neural MAP as compared to DAS.
However, neural MAP allows for better noise suppression
compared to ABLE, which can be explained by the fact that
the proximal step acts as a denoiser. So far we have not yet
performed an exhaustive search to optimize network hyperpa-
rameters (e.g. kernel sizes), as such future work may further
improve the reported results.

In the current implementation, we achieved an inference
time of 30-35ms per frame, which indicates the feasibility of
real-time imaging. We expect that optimizations will further
reduce computation time, thereby improving the framerate.

5. CONCLUSION

This work presents a model-based beamforming approach
that leverages deep learning techniques and prior knowledge
of the signal model. Our experimental results demonstrate
that the proposed method achieves enhanced contrast on in-
vivo data in the presence of varying levels of interference,
surpassing the current state-of-the-art in this field. More-
over, the achieved inference time suggests that the proposed
method is a feasible solution for real-time ultrasound imaging
applications.
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