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ABSTRACT
We present dual-attention neural biasing, an architecture designed to
boost Wake Words (WW) recognition and improve inference time
latency on speech recognition tasks. This architecture enables a dy-
namic switch for its runtime compute paths by exploiting WW spot-
ting to select which branch of its attention networks to execute for
an input audio frame. With this approach, we effectively improve
WW spotting accuracy while saving runtime compute cost as de-
fined by floating point operations (FLOPs). Using an in-house de-
identified dataset, we demonstrate that the proposed dual-attention
network can reduce the compute cost by 90% for WW audio frames,
with only 1% increase in the number of parameters. This architec-
ture improves WW F1 score by 16% relative and improves generic
rare word error rate by 3% relative compared to the baselines.

Index Terms— Speech recognition, inference optimization,
wake word spotting, attention, neural biasing, personalization

1. INTRODUCTION

End-to-end (E2E) ASR systems such as connectionist temporal clas-
sification (CTC) [1], listen-attend-spell (LAS) [2], recurrent neural
network transducer (RNN-T) [3], transformer transducer [4–8], and
their variants ConvRNN-T [9], conformer [10, 11] have become in-
creasingly popular due to their superior performance over hybrid
HMM-DNN systems, making them promising architectures for de-
ployment in commercial virtual voice assistants. While hybrid mod-
els optimize the acoustic model (AM), pronunciation model (PM)
and language model (LM) independently, E2E systems jointly op-
timize them to output word sequences directly from an input se-
quence. These fully neural E2E approaches are strong candidates for
low resource settings due to their simplicity and unified compression
capabilities. However, one of the major limitations of E2E ASR sys-
tems is that they have difficulty in accurately recognizing words that
are uncommon in the paired audio-text training data, such as cus-
tom WW which are specified by the customer to address a virtual
assistant (e.g. Ziggy, Hey Shaq), contact names, proper nouns, and
other rare named entities [12, 13]. To address this issue, previous
works [8, 14] have proposed attention-based neural biasing which
apply a biasing adapter mechanism by scoring the similarity of en-
coded audio representations with personalized catalog embeddings.
Attention-based neural biasing is a promising approach to boost per-
sonalized entity names; however, due to its compute complexity by
application on the audio encodings frame-by-frame, the incurred
runtime latency challenges scalable deployment of these attention-
based biasing networks for on-device systems with hardware con-
straints (e.g. limited memory bandwidth and CPU constraints).

∗Equal Contribution.

To address compute limitations for on-device ASR, model com-
pression is a commonly used methodology. In general, model com-
pression techniques can be divided into two categories: architecture
modification and weight interpretation. The former reduces com-
plex architectures to simplified alternatives while the latter inter-
prets weights with low-bit representations. Our work belongs to
the architecture modification category. Also in this category are
CIFG [15] which simplifies the LSTM structure [16] by merging the
input and forget gates which results in 25% fewer parameters; sim-
ple recurrent unit [17] introduces more efficient recurrent cells for
Edge ASR; low-rank factorization [18], bifocal [19], dynamic en-
coders [20], amortized networks [21, 22], linformer [23], performer
[24] and time-reduction layers [2, 25, 26] which are suggested to re-
duce runtime latency. In the second category, quantization [27–29],
sparsity [30–32] are dominant paradigms used to interpret weights
with lower-bit integer or sparse representations.

Our work is inspired by the bifocal neural transducer [19], that
contains two audio encoder networks which are dynamically piv-
oted at run time. One major difference in our work is the compute
cost amortized Multi-Head Attention (MHA) [4] biasing networks
designed to simultaneously boost custom WW and personalized en-
tities. In contrast to vanilla neural biasing [8, 14] which does not
differentiate sentence segments, the proposed dual-attention network
biases towards only WW embeddings at the sentence-beginning, and
proper name embeddings (e.g. contact names, device names) at post-
WW segments.

2. RELATED WORK

2.1. Bifocal RNN-T

Neural sequence transducers are streaming E2E ASR systems [3]
that typically consist of an audio encoder, a text predictor and a
joint network. The encoder, behaving like an AM, produces high
level acoustic representations henc

t for each input audio frame xT =
(x0, . . . , xT ). The text predictor, acting like an LM, encodes pre-
viously predicted word-pieces yu−1 = (y0, . . . , yu−1) and outputs
hpred
u , with

henc
t = AudioEncoder(xt); hpred

u = TextPredictor(yu−1).

The joint network fuses henc
t and hpred

u and passes them through
dense and then softmax layers to obtain output probability distribu-
tions over the word-pieces.

Bifocal RNN-T [19], is a special type of neural transducer, con-
sisting of two audio encoders: a small/fast encoder trained for the
buffered lead-in audio segments that contains pre-WW and WW au-
dio frames; and a large/slow encoder for processing the remainder
of the audio leveraging WW spotting to pivot between the two (Fig.
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Fig. 1: Model architectures: (a) baseline bifocal neural transducer pretrained-base [19]; (b) baseline single-attention neural biasing single-
attn-base-128 [8, 14]; (c) proposed dual-attention neural biasing dual-attn-λ, where λ is the projection size of the small MHA; initialize the
model with pretrained weights (grey blocks); add dual-attention modules (blue blocks); only train the blue blocks by freezing the grey ones.

1(a)). Bifocal architecture improves latency by diverting WW au-
dio frames to its fast encoder branch. However, it has limited ca-
pacity to adapt itself to recognize new or rare words, particularly
user-specified WW directed to its low-capacity small audio encoder.
This drawback degrades user experience by falsely rejecting voice
queries initiated from custom WW or diverting to another virtual as-
sistant personality by mistake. The proposed dual-attention architec-
ture is designed to mitigate this limitation using an attention network
to “just focus on” boosting the desired WW.

2.2. Neural Biasing

To leverage a user’s custom environment and preferences to im-
prove recognition of personalized requests directed to voice assis-
tants, both [8] and [14] suggest neural biasing (Fig. 1(b)) consisting
of MHA layers [4] to measure the similarity of audio encoding with
entity-name embedding. The attention weights are computed frame-
by-frame to assess the relevance of user pre-defined entity-names
with the current audio frame. Neural biasing effectively boosts per-
sonalized entity-names (e.g. proper names such as contacts and
device names) because more relevant entity-names receive higher
attention weights. However, due to quadratic complexity of dot-
product attention [4], runtime latency has been a bottleneck to de-
ploy neural biasing to embedded ASR systems.

3. DUAL-ATTENTION NEURAL BIASING

To address the on-device latency and compute limitations, and in-
spired by bifocal RNN-T and neural biasing (Sec. 2), we propose
dual-attention neural biasing (Fig. 1(c)), which enables a dynamic
pivot for its runtime compute paths, namely leveraging WW spotting
to select the branch of the network to execute an input audio frame
on. The motivation of dual attention is to introduce bifocal “lenses”
engineered to focus on different segments of an utterance. The dis-
tinguishing feature of this design is training two alternative MHA
networks (highlighted blue components in Fig. 1(c)). A small atten-
tion networkAs, coupled with the small audio encoder, is trained for
the lead-in segments and a large attention networkAl paired with the
large audio encoder for the rest of the audio. As is designed to boost

the ASR accuracy for user-specified custom WW (typically in the
order of 10), while Al is engineered to improve the recognition of
personalized entity names (can scale to tens of thousands). As has a
smaller number of hidden units than Al, enabling faster but coarser
frame processing. In contrast,Al has a larger capacity, but at the cost
of more compute. The final component in this design is the context
encoder, namely a BiLSTM encoder, which takes tokenized custom
WW/proper names from a sentence-piece tokenizer [33]. The last
state of this BiLSTM is used as the embedding Cww

e or Ce. In
Fig. 1 (c), we first pretrain the bifocal transducer (grey blocks), then
fine tune only the context encoder and the two MHA models (blue
blocks) by keeping the rest of the pretrained weights (grey blocks)
frozen [14].

3.1. Dual-Attention Biasing Networks

The small MHA network As is trained to learn the correlation be-
tween the lead-in audio encoding and user enabled WW text embed-
ding. It is a light-weight model thanks to the natural lower perplexity
of the spoken words prior to the WW. In contrast, higher perplexity
of the post WW segment requires an MHA model Al with higher
capacity. The objective of this dual-attention design is to match the
accuracy of single-attention baseline (Sec. 2.2) and to reduce the
FLOPs since this architecture emphasizes the reduction of the MHA
inference cost as it is one of the primary runtime bottlenecks.

3.2. Dynamic Catalog Masking

In contrast to [8, 14] (Fig. 1(b)) which statically concatenates WW
and proper names embeddings without differentiating sentence seg-
ments, one distinguishing feature in our design (Fig. 1(c)) is cata-
log masking which is dynamically determined by the frame index
signaling the end of the WW. At inference time, we only apply
WW embeddings Cww

e in As by dynamically masking out proper
names tokens. In this way, we effectively narrow down the bias-
ing candidates from tens of thousands (i.e. proper names) to 6 (i.e.
custom WW only) for better focusing, and to rule out less relevant
catalogs like contacts/device names from appearing at the sentence-
beginning. Similarly, for Al, we drop out WW catalogs and only
apply proper names embeddings Ce. In this way, we enable the two



Model Lead-in audio
segment FLOPs

Biasing layer
parameters

Lead-in audio
catalog size

RNN-T C-T

F1R TRRR TARR F1R TRRR TARR

pretrained-base − − − − − − − − −
single-attn-base-128 3.3M 400K 300 +14.72% -14.80% +28.73 % +14.96% -12.84% +41.96%

single-attn-catalog-mask 190K (-93.7%) 400K(+0.0%) 6 +17.03% -15.17% +31.39% +16.93% -11.11% +42.77%
dual-attn-64 95K (-96.9%) 483K(+20.7%) 6 +16.42% -14.07% +36.45% +14.14% -7.98% +32.42%
dual-attn-32 48K (-98.4%) 441K(+10.3%) 6 +16.00% -12.43% +26.07% +15.34% -12.15% +42.51%
dual-attn-16 23K (-99.2%) 421K(+5.1%) 6 +14.34% -16.63% +29.01% +14.38% -12.15% +39.23%
dual-attn-8 12K (-99.6%) 410K (+2.5%) 6 +2.38% -4.21% +8.52% +9.30% -5.90% +19.07%

Table 1: Compute cost measured in FLOPs (M=106, K=103); number of parameters in the biasing layers; relative changes in F1 score
(denoted as F1R), True Reject Rate (TRRR) and True Accept Rate (TARR) for the proposed dual-attn-λ in Fig. 1(c), comparing with baseline
pretrained-base as shown in Fig. 1(a); single-attn-base-128 refers to Fig. 1(b); +/- sign means to improve/degrade.

MHAs to bias toward their own targets by masking out irrelevant
catalogs. As shown in Fig. 1(c), the highlighted yellow box con-
taining the context encoder runs offline to generate and cache neural
embeddings Cww

e for user-customized WW ww1, . . . , wwk and Ce

for proper names cn1, . . . , cnm. These cached embeddings Cww
e

and Ce are dynamically masked for runtime inference. We also in-
troduce a special no-bias token into our catalog as in [14,34] to help
the dual-attention system to learn when not to bias.

4. EXPERIMENTS

4.1. Datasets

We use 114K hours of de-identified in-house voice assistant (gen-
eral) dataset randomly sampled from live traffic across more than
20 domains (e.g. Music, Communications, SmartHome) to pre-
train the baseline RNN-T and Conformer-Transducer (C-T) mod-
els1. For training the dual-attention networks, we use 290 hours
of proper names (that contains mentions of named entities), gen-
eral data which is mixed in the ratio of 1:2.5, and 3.6K hours of
semi-supervised dataset containing 6 custom WW generated using
a teacher model [35]. To evaluate the models, we use a 75-hour
general testset and a 20-hour proper names testset which are both
human-transcribed. For calculating WW true accept and true reject
rates, we use 25 hours of human annotated data containing 6 WW.
The training and test sets are de-identified and have no overlap.

4.2. Experimental Setup

We evaluate the dual-attention neural transducers with two pre-
trained ASR architectures, RNN-T and C-T.

RNN-T and C-T Pretraining. The input audio features are
64-dimensional LFBE features extracted every 10ms with a win-
dow size of 25ms resulting in 192 feature dimensions per frame.
Ground truth tokens are passed through a 2.5K and 4K word-piece
tokenizer [33, 36] for RNN-T and C-T, respectively. The RNN-T
encoder has 5 LSTM layers and a time reduction layer with down-
sampling factor of 2 at layer 3. Each LSTM layer has 256 units each
layer for the lead-in audio encoder and 1120 units for the large au-
dio encoder (Fig. 1(a)). The prediction network has 2 LSTM layers
with 1088 units each. The C-T encoder network consists of 2 con-
volutional layers with 128 kernels of size 3, and strides 2 and 1 for
the first and second layer, respectively, followed by a dense layer
to project input features to 512 dimensions. They are then fed into
14 conformer blocks, that contain layer normalizations and residual

1As far as we know, there does not exist a large-scale public dataset that
contains a variety of user-customized WW.

links between layers. Each conformer block has a 1024 unit feed-
forward layer, 1 transformer layer with 8 64-dimensional attention
heads and 1 convolutional module with kernel size 15. The pre-
diction network has 2 LSTM layers with 736 units each. Convolu-
tions and attentions are computed on the current and previous audio
frames to make it streamable. For both RNN-T and C-T, the encoder
and prediction network outputs are projected through 512 units of a
feedforward layer.

Baselines. The baseline pretrained-base shown in Fig. 1(a) is a
bifocal neural transducer [19] (RNN-T or C-T) which has two au-
dio encoders but no neural biasing layers [8, 14]. This model has
fast inference but poor accuracy on proper names. The second base-
line single-attn-base-128, displayed in Fig. 1(b), is a single-attention
neural biasing transducer model as in [8, 14] with keys and val-
ues projected to 128 dimensions. This baseline has good accuracy
on proper names but slower inference at runtime compared to the
pretrained-base. The third model single-attn-catalog-mask is the
same as single-attn-base-128 (Fig. 1(b)) except that irrelevant cat-
alogs (e.g. proper names) are removed from the small audio encoder
via dynamic catalog masking (Sec. 3.2).

Configuration for dual-attention biasing networks. The con-
text encoder is a BiLSTM with 64 units (for each forward and back-
ward LSTM). The input and output have 64-dimensional projections.
This context encoder is trained from scratch to generate embeddings
for both WW and proper names. These embeddings are then fed
into the dual-attention layers to bias the audio encoders outputs (Fig.
1(c)). More precisely, the large MHA network takes the large au-
dio encoder outputs as query, and proper names embeddings as key
and value and projects them to 128 dimensions. On the other hand,
the small MHA is a light-weight model which takes query from the
small audio encoder outputs, and WW embeddings as key and value
and projects them to size λ, denoted as dual-attn-λ. We experiment
with λ = 64, 32, 16, and 8. In the following experiments, both small
and large MHA only use 1 attention head, since we did not observe
accuracy gains with 2 or 4 heads.

5. RESULTS

Given a model A’s WER (WERA) and a baseline B’s WER (WERB),
the relative Word Error Rate Reduction (WERR) of A over B is com-
puted as WERR = (WERB −WERA)/WERB . The WW accuracy
is measured in terms of True Accept Rate (TAR), True Reject Rate
(TRR) and F1 score, where TAR is the proportion of ground truth
positives that are accepted correctly; TRR is the fraction of ground
truth negatives that are rejected correctly and F1 score is the har-
monic mean of TAR and TRR. We present F1, TAR and TRR rela-
tive improvement (denoted by F1R, TARR and TRRR respectively)



RNN-T C-T

general proper names general proper names

pretrained-base − − − −
single-attn-base-128 +0.2% +26.73% +0.2% +29.08%

single-attn-catalog-mask +0.2% +28.13% -0.2% +29.63%
dual-attn-64 +0.2% +28.13% 0.0% +29.23%
dual-attn-32 +0.8% +27.24% 0.0% +29.08%
dual-attn-16 +0.8% +27.98% 0.0% +30.42%
dual-attn-8 +0.2% +28.64% -0.2% +29.23%

Table 2: WERR relative to pretrained-base; +/- sign implies an im-
provement/degradation in WER.

Fig. 2: Attention weight visualization over different catalog entities
for dual-attn-64 model (bright colors represent a greater weight).
Each frame represents 60ms.

against a baseline model. Higher values of WERR, F1R, TARR and
TRRR represent better performance. Negative values mean degrada-
tion. To measure compute cost, we report the total number of MHA-
layer floating point operations [19, 21] per frame (FLOPs) required
for the lead-in audio.

5.1. Wake word accuracy

As the model learns to bias towards the desired WW, TARs natu-
rally improve. TRR may degrade since the model is biased to accept
more queries. From Table 1, the proposed model dual-attention-
λ improves WW TARR by up to 36% (RNN-T) and 42% (C-T)
against their bifocal baselines pretrained-base. As we reduce the
projection dimension λ from 64 to 16, we still see 29% improve-
ment of TARR for RNN-T, and 39% for C-T. When λ=8, the TARR
improvement is 8.5% and 19% for RNN-T and C-T respectively. On
the other hand, we observed up to 14% and 12% regression in TR-
RRs for RNN-T and C-T. In fact, the proposed dual-attention model
dual-attn-λ slightly outperforms Fig. 1(b) baseline single-attn-base-
128 in TRRR for λ = 64, 32, 8 for RNN-T and all values of λ for
C-T. Taking into account of both TAR and TRR, dual-attention-λ
improves F1-score by up to 17% for both RNN-T and C-T.

5.2. ASR accuracy

Table 2 presents the WERR for the proposed dual-attention-λ (Fig.
1(c)) against the bifocal baseline pretrained-base (Fig. 1(a)). On
proper names test set, dual-attention architectures reduce WER by
up to 28.6% for RNN-T (vs. 26.7% for single-attn-base-128), and
30.4% for C-T (vs. 29.1% for single-attn-base-128) thanks to cat-
alog masking (detailed in Sec. 3.2) and a specialized MHA trained
to “focus on” more relevant catalogs. As we reduce λ from 64 to 8
for the WW MHA network, we do not observe accuracy degradation
against single-attn-base-128 on proper names or general test sets.
This shows that dual-attn-λ reduces compute cost without hurting
ASR accuracy for both RNN-T and C-T.

5.3. Compute Cost & Attention Visualization

Table 1 shows the compute cost measured in FLOPs. Using neural
biasing [8, 14] single-attn-base-128 as baseline (Fig. 1(b)), with a
small increase of 83K parameters (from 400K to 483K or 1% of
∼80M parameters), FLOPs (with catalog size 300) decreases from
3.3M (single-attn-base-128) to 95K (dual-attn-64). As we reduce λ
from 64 to 8, we further improve FLOPs from 95K to 12K. However,
when λ = 8, we observe reduced gain in WW accuracy: a relative
F1 score improvement of 1% and 6% respectively for RNN-T and C-
T. It is worth noting that catalog masking plays an important role in
reduce FLOPs (from 3.3M to 190K) as we narrow down the biasing
candidates from 300 to 6 for the lead-in audio segment. In figure 2,
we visualize attention heat map for the small and large MHA layers
with catalog masking. The small MHA layer shows high values for
true WW hey shaq while less relevant proper names catalogs are
masked out, whereas the large MHA biases towards the target proper
name brad pitt while the WW catalogs are masked out.

6. CONCLUSION

We proposed a dual-attention neural transducer network which was
inspired by bifocal RNN-T as well as attention-based neural biasing.
This proposed architecture exploited WW spotting to dynamically
select a biasing branch and efficiently boosted the ASR accuracy
of proper names as well as custom WW, at the same time reducing
runtime compute FLOPs and alleviated runtime latency of attention
networks.
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