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ABSTRACT
During speech perception, a listener’s electroencephalogram (EEG)
reflects acoustic-level processing as well as higher-level cognitive
factors such as speech comprehension and attention. However, de-
coding speech from EEG recordings is challenging due to the low
signal-to-noise ratios of EEG signals. We report on an approach de-
veloped for the ICASSP 2023 ‘Auditory EEG Decoding’ Signal Pro-
cessing Grand Challenge. A simple ensembling method is shown
to considerably improve upon the baseline decoder performance.
Even higher classification rates are achieved by jointly decoding the
speech-evoked frequency-following response and responses to the
temporal envelope of speech, as well as by fine-tuning the decoders
to individual subjects. Our results could have applications in the di-
agnosis of hearing disorders or in cognitively steered hearing aids.

Index Terms— EEG decoding, deep learning, speech

1. INTRODUCTION

When people listen to speech, their brainwaves synchronise with
acoustic features such as the speech envelope. The degree of this
neural tracking reflects cognitive factors such as attention to speech,
speech comprehension, and intelligibility [1, 2]. Accurately decod-
ing speech from electroencephalography (EEG) is, however, a chal-
lenging task owing to the low signal-to-noise ratios of EEG record-
ings and the limited availability of EEG data recorded during speech
perception.

Neural speech tracking in a particular subject is best assessed
when EEG responses to speech from that particular subject are avail-
able and can be used to train a subject-specific decoder. Decoding
EEG responses to speech from unseen subjects is a harder task,
since EEG signals vary greatly between individuals. The ICASSP
2023 ‘Auditory EEG Decoding’ Signal Processing Grand Challenge
involves both types of decoding. Its task is to develop population
match-mismatch decoders: given a temporal segment of EEG data
and two candidate speech segments, the decoder should predict
which of the speech segments corresponds to the EEG signal. This
should be done both for EEG recordings from subjects that have
been included in the training set, and for others whose EEG data has
not been seen in the training stage.

Here we describe the development of our decoders which placed
first in this match-mismatch task. Besides the speech envelope, we
relate a second acoustic feature to the EEG recordings. This feature
is the temporal fine structure of the voiced parts of speech (which
consist of a fundamental frequency and many higher harmonics).
The electroencephalogram displays a strong response at the funda-
mental frequency of speech, termed the speech-frequency-following
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response or speech-FFR [3]. The speech-FFR is driven both by the
fundamental frequency itself as well as by higher harmonics, and can
be decoded from EEG responses to continuous speech [3, 4, 5, 6].

2. MATERIALS AND METHODS

2.1. Dataset. A large training dataset was provided by the ICASSP
competition organisers, which consisted of EEG recordings from 71
subjects who listened to speech material [7]. Decoders were eval-
uated against a heldout dataset comprising EEG from 70 subjects
included in the training dataset, and 15 new unseen subjects.

We used two pre-processed versions of the dataset that contained
the two speech features of interest together with the corresponding
EEG signals. The first dataset consisted of speech envelopes and
EEG recordings sampled at 64Hz. The second dataset contained the
envelope modulations of the higher harmonics of the fundamental
frequency of the voiced parts of speech, together with EEG sampled
at 512Hz [6]. Pre-processing and methodological details will be
described in a forthcoming publication [8].

2.2. Baseline decoder. The baseline decoder is a deep neural network
(DNN) proposed by Accou et al. [2]. This DNN brings the speech
envelopes and EEG recordings into a space where the matched en-
velope and EEG segments are maximally similar. The output layer
consists of a single Sigmoid neuron. The matched and mismatched
envelopes are presented as an ordered pair, and the Sigmoid neuron
predicts the probability that the first envelope is matched to the EEG.
The decoder is trained with the binary crossentropy loss function
and Adam optimizer without regularisation.

2.3. Baseline + speech-FFR decoder. The baseline decoder relates
the EEG recordings to the temporal envelope of speech only. We
were also interested in relating the EEG signals to the temporal
fine structure of speech, since this can improve classification per-
formance [9]. We retained the architecture of the baseline decoder,
but swapped the speech envelopes for the high-frequency envelope-
modulations feature [6]. The Sigmoid outputs of this speech-FFR
decoder and the baseline decoder were combined via linear discrim-
inant analysis (LDA) to produce the final predicted label.

2.4. Decoder training and fine-tuning. Training examples were
presented to the decoders as temporal segments of 3 s in duration
(the same duration was used for evaluation). Sources of random-
ness in the training procedure include the decoder initialisation, and
the order in which training examples were presented. The effects of
these were marginalised by averaging the Sigmoid outputs of sev-
eral trained instances of the decoders. For the population decoders,
the hop length between the onsets of the training examples was 1 s.
When fine-tuning the population decoder to individual subjects, this
was reduced to 0.125 s, and regularisation (batch normalisation and
spatial dropout) was applied to the input layers.
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3. RESULTS

3.1. Averaging of decoder outputs. We trained 100 instances of the
baseline decoder. By averaging the Sigmoid outputs of the instances,
the classification accuracy was improved (Figure 1). Therefore, we
formed two averaged population decoders: these used 50 instances
of the baseline decoder, and 30 instances of the speech-FFR decoder,
respectively. The averaged decoders were used in Section 3.2.
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Fig. 1. Classification accuracies against number of averaged de-
coders (log scale). The bootstrapped mean and range of the accu-
racies are denoted by the dots and errorbars respectively.

3.2. Combining averaged baseline and speech-FFR decoders. The
baseline decoder generally achieves higher accuracies than the
speech-FFR decoder (Figure 2, left). The LDA classifier was fitted
on an unseen portion of the training dataset, for which the corre-
lation between the Sigmoid outputs of the decoders was moderate
(R = 0.229, Figure 2, right). For the heldout dataset the correlation
was similar (R = 0.206), confirming that there was no severe over-
fitting or distributional shift. This composite decoder achieved an
accuracy of 81.18% on the heldout dataset for unseen subjects.
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Fig. 2. Comparison between the averaged baseline and speech-FFR
decoders. (Left) The accuracies of the two decoders are shown for
the 71 subjects. (Right) The Sigmoid outputs of the averaged de-
coders are shown. A red (blue) point indicates an EEG segment
that matches the first (second) speech segment (recall that these are
grouped as an ordered pair). The LDA decision boundary is shown.

3.3. Decoder fine-tuning. Figure 3 shows the effect of fine-tuning
the decoders to individual subjects. For both the baseline decoders
and the speech-FFR decoders, fine-tuning significantly improved the
classification accuracy (p < 0.001, signed-rank tests). The fine-
tuned baseline decoders achieved an accuracy of 82.71% on the held-
out dataset for seen subjects.

4. CONCLUSIONS

The performance of the baseline decoder could be improved by av-
eraging the outputs of several trained decoder instances. Combining
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Fig. 3. Effect of fine-tuning the decoders to individual subjects. Each
datapoint represents the classification accuracy for a single subject.

the averaged baseline and speech-FFR decoders enhanced the de-
coding accuracies further. The best results were obtained by using
versions of the baseline decoder which were fine-tuned to individual
subjects where possible, and by using the composite decoder for un-
seen subjects. This approach won the match-mismatch task of the
ICASSP 2023 Signal Processing Grand Challenge ‘Auditory EEG
Decoding’. Future work will establish which aspects of the fine-
tuning procedure led to such high classification accuracies.
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