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ABSTRACT

This paper describes an end-to-end (E2E) neural architec-
ture for the audio rendering of small portions of display
content on low resource personal computing devices. It is
intended to address the problem of accessibility for vision-
impaired or vision-distracted users at the hardware level.
Neural image-to-text (ITT) and text-to-speech (TTS) ap-
proaches are reviewed and a new technique is introduced to
efficiently integrate them in a way that is both efficient and
back-propagate-able, leading to a non-autoregressive E2E
image-to-speech (ITS) neural network that is efficient and
trainable. Experimental results are presented showing that,
compared with the non-E2E approach, the proposed E2E sys-
tem is 29% faster and uses 19% fewer parameters with a 2%
reduction in phone accuracy. A future direction to address
accuracy is presented.

Index Terms— OCR, TTS, image-to-speech

1. INTRODUCTION

Users of touchscreen-enabled personal computing devices
such as cell phones, tablets, and laptops may encounter situa-
tions where safety considerations or visual impairment make
it difficult to take in display content. Operating system (OS)
accessibility features that read aloud the text on the display
can be used to mitigate this problem. However, screen read-
ers are typically subordinate to the OS and may not render
text content within images. The use of a dedicated neural
network co-processor to implement such a capability has the
advantages of low cost per watt, low power consumption,
robustness to operating system failure, and application inde-
pendence. Although it is possible to generate audio from a
region of the display using separate image recognition and
audio production neural networks, a non-autoregressive E2E
neural network architecture is more suitable for this applica-
tion since it simplifies the hardware design and the inference
procedure. To keep power consumption and cost low it is
also necessary to minimize the required memory footprint. In

Fig. 1. Image-to-Audio: non-back-propagateable post-/pre-
processes steps in yellow are replaced by our novel expansion
module shown in red. This enables end-to-end training.

this paper we introduce a non-autoregressive E2E neural net-
work suitable for embedded hardware implementation of an
image-to-speech subsystem in personal computing devices.
We build upon previous research in the areas of image-to-text
(ITT) and text-to-speech (TTS) and introduce a novel method
to bridge these into a single trainable ITS neural network. As
far as we are aware, this is the first time this has been done.

The network structures shown in Figure 1 synthesize
speech given the fixed size image of a word. In the left half of
the figure, we show the pipeline (detailed in Section 2) using
separate non-autoregressive ITT and TTS models. We desire
a fully backpropagatable non-autoregressive E2E network.
However, the post-/pre-processing steps shown in yellow are
non-back-propagatable. Therefore, we devote our efforts to
the pink box in the right half of Figure 1 which addresses
alignment of the speech with the encoded image. Our contri-
bution is an intuitive sequence expansion module for the E2E
ITS system that is flexible enough to accommodate a wide
variety of image encoders and Mel-spectrogram generators.
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The rest of the paper is organized as follows: Section 2 de-
scribes the ITS problem in light of previous work. Section 3
presents the E2E DNN architecture in detail. Section 4 in-
troduces the training process and evaluation metrics. Finally,
Section 5 presents results followed by conclusions.

2. BACKGROUND

Image-to-text (ITT) aims to recognize text in input images.
Generally, ITT contains three modules: an optional rectifier,
an image encoder, and a sequential decoder. The rectifier seg-
ments and normalizes images through transforming various
types of text irregularities in a unified way [1]. The image
encoder extracts hidden representations from the normalized
image [1]. And the decoder generates a sequence of charac-
ters based on the hidden representations. Non-autoregressive
ITT predicts sequences of arbitrary length. In the training
process, groundtruth text is expanded with additional place-
holders, i.e. ε or repeated characters, making the expanded
groundtruth have the same length as the model’s hidden rep-
resentation sequence before feeding it to the chosen loss func-
tion [2, 3, 4]. During inference, characters are obtained after
removing the placeholders. The expansion algorithms vary
among loss functions. Connectionist temporal classification
(CTC) [2] utilizes both repeated characters and ε. Aggrega-
tion cross-entropy [5] only utilizes ε as the placeholder. Both
loss functions minimize the distance between the target text
and all possible expanded texts, thus, a placeholder can oc-
cur at any position in the raw output. Cai et al. [6] revises a
traditional method: expanding groundtruth by inserting ε at
the tail and minimizing this expansion through cross-entropy
(CE) loss. Cai et al. [6] indicates that, with proper configu-
ration, this method can achieve comparable performance to
CTC [2]. Therefore, we adopt this approach here.

Text-to-speech (TTS), which aims to synthesize natu-
ral and intelligible speech given text, first converts the text
(i.e., sequence of graphemes or phonemes) to acoustic fea-
tures (e.g., sequence of Mel-spectra) and then transforms the
acoustic features into audio samples through a vocoder. Since
a phoneme sequence is much shorter than its Mel-spectra
sequence, aligning phonemes with Mel frames is essential.
Recent approaches to solving this problem include the use of
autoregressive DNNs as well as the use of non-autoregressive
DNNs which rely on the monotonicity of phoneme-to-Mel
alignment and predict duration explicitly to bridge the length
mismatch [7]. These sequence expansion modules contain
expansion length regulators as well as phoneme duration pre-
dictors for the hard alignment between a phoneme and its
Mel frames. The ground-truth alignments are obtained from
an external aligner. FastSpeech [7] and ParaNet [8], which
were the first proposed non-autoregressive models, utilize
a pretrained autoregressive model to obtain the phoneme-
level ground-truth alignments and FastSpeech2 [9] utilizes
a forced aligner for the same purpose. PortaSpeech [10]

Fig. 2. Processing an image containing the word ”CAT”. The
symbol, ε, represents a placeholder. The green rectangular
boxes stand for hidden representations of symbols.

eases the negative effect of imprecise phoneme alignment by
learning word-level hard alignment from external aligner and
phoneme-level soft alignment through an attention mecha-
nism. Parallel Tacotron2 [11] and ESA [12] utilize a com-
bination of differentiable duration predictor and attention-
based length regulator to model the utterance duration and
learn the phoneme alignment without an external aligner.
Glow-TTS [13] utilizes the invertible transformation prop-
erty of flow-based models and searches the most probable
monotonic alignments through dynamic programming. In
this work, we adopt non-autoregressive TTS with phoneme
sequence input. We avoid grapheme sequence input due to
problems reported in [12].

3. E2E IMAGE-TO-SPEECH ARCHITECTURE

The core challenge of the E2E system is aligning Mel-
spectrograms with the encoded image sequences with arbi-
trary length. In TTS, the length of each Mel-spectra sequence
is derived directly from the encoded phoneme sequence.
However, in ITS, the lengths of encoded image sequences
and the lengths of Mel-spectra sequences are not related.
To bridge this gap, we introduce a non-phoneme symbol, ε,
as the only placeholder and expand phoneme sequences to
an arbitrary fixed length by inserting ε’s at the tail. More-
over, we define that only phonemes can be aligned to Mel-
spectrograms and the duration of any ε must be zero. In
summary, we assign two tasks to the duration predictor: 1)
predicting phoneme durations (positive values) and 2) rec-
ognizing ε’s (zeros). This eliminates the need for additional
layers (e.g., used in [14]) for the second task.

We present our architecture with an example image in Fig-



ure 2. First, the image encoder encodes “cat” into the hid-
den representation of the expanded phoneme sequence. Then
the duration predictor predicts the duration of every vector
in the sequence. The predictor generates zero if the hidden
vector represents an ε. Moreover, the Linear Layer on the
right side transforms the hidden representation to the required
dimension of Mel-spectra generator. Third, we expand the
transformed representations through repeating each vector d
times where d is its respective duration. Fourth, the Mel-
spectrogram generator takes the expanded representation as
input and synthesizes the Mel-spectrogram. Lastly, a vocoder
synthesizes the raw waveform based on the synthesized Mel-
spectrogram.

Image Encoder. We follow the ITT architecture introduced
in Section 2. We utilize the same rectifier as Shi et al [1] and
adopt HBONet [15] as the backbone network to extract hid-
den features from the rectified images. A pooling layer ex-
tracts global semantic information from hidden features and
feeds it to 26 linear layers. The ith linear layer predicts the
ith output. If a word only hasN phonemes, then the last 26-N
layers should predict ε. Our configuration of HBONet is sim-
ilar to [15] except we change the values of n and s of the first
Inverted Residual block to be 1 (see Table 1 in [15]). Em-
pirically, we found that this modification impacts the model
accuracy very slightly while saving 0.5M parameters.

Duration Predictor. The duration predictor consists of two
convolutional blocks. Each block consists of a 1D time-
channel separable convolution, a 1×1 step-wise convolution,
layer normalization, ReLU, and dropout. A linear layer along
with a softplus layer projects the sequence of hidden repre-
sentations to a sequence of scalars, which are the predicted
phoneme durations.

Mel-spectrogram Generator. To have a lightweight archi-
tecture, we use the same variational autoencoder (VAE) based
synthesizer as proposed in PortaSpeech [10]. The synthesizer
is comprised of an encoder, a volume-preserving (VP) flow-
based prior model and a decoder. The encoder is composed
of a 1D-convolution with stride 4 followed by ReLU activa-
tion, layer normalization, and a non-causal WaveNet [16].
The prior model is a volume-preserving normalizing flow,
which is composed of a residual coupling layer and a channel-
wise flip operation. The decoder consists of a non-causal
WaveNet [16] and a 1D transposed convolution with stride
4, also followed by ReLU and layer normalization.

4. TRAINING AND EVALUATION

The system is trained in a multi-step fashion as follows. To
train the image encoder, we employ CE loss to ensure that the
encoder transforms the image into hidden representations of
phonemes and ε, and we adopt the same training configura-
tion as Cai et al. [6]. Next, we freeze the pretrained image en-
coder and train the expansion module and Mel-spectrogram

generator with same configuration as PortaSpeech [10]. Fi-
nally, we train the vocoder with the raw waveform and the
groundtruth Mel-spectrogram. Thus, the vocoder’s training
is independent. We follow HiFiGAN [17]’s configuration for
HiFiGANv2 whose model only contains 0.9M parameters.

4.1. Training Dataset and Preprocessing

The size of input image is set to 64x224. Since we use data
sets that are designed for ITT tasks and only offer image-word
pairs, we utilize a grapheme-to-phoneme (G2P) tool [18] to
translate words into phoneme sequences. To ensure that our
results are reproducible, we use Microsoft®Azure speech ser-
vice to synthesize the ground truth audio. Since we adopt a
multi-step training process, we introduce the training data for
each step.
Image Encoder. We combine two datasets together: MJSynth
(MJ) [3], which contains 9 million word box images gener-
ated from a lexicon of 90K English words and Synthtext[19].
We exclude images that contain non-alphabetic characters.
Sequence Expansion Module and Mel-spectrogram Gen-
erator. We generate the ground truth audio for each word
in MJ. We sample 20% of the images of each word from the
cleaned MJ [3]. Moreover, to enlarge the sample size of short
words, we sample 100 images from Synthtext [19] for every
word that has less than 6 characters. To increase the speed
variation of each word, we randomly apply speed perturbation
to each image-audio pair. Empirically, this operation reduces
the impact of misalignment caused by the external aligner. We
transform the raw waveform with a sampling rate of 22050
Hz into Mel-spectrograms with frame size 1024 and hop size
256. The dataset contains both image and word information
so that we can train ITS and TTS models.
Vocoder. We generate ground truth audio for each utterance
in LJSpeech [20] and use that synthesized audio as training
data.

4.2. Testing Dataset

To tailor the end-to-end ITS system for likely displayed
content on personal computing devices we synthesize the
top-3000-frequent words based on the word frequency of
Wikipedia though an open-source toolkit 1 with random fonts
and color combinations.

4.3. Evaluation Metrics

Empirically, we found that the Microsoft®Azure automatic
speech recognition (ASR) service performed well on the
ground truth audio recordings. Thus, we used the service
to transcribe our synthesized output audio. However, since
each synthesized output only contains one word and the ASR
cannot distinguish among homonyms without context, our

1github.com/Belval/TextRecognitionDataGenerator



evaluations are based on phoneme sequences instead of char-
acter sequences. We adopt two evaluation metrics: phone
error rate (PER) and word accuracy.

5. EXPERIMENTS

5.1. Quality of Audio Synthesis

We compare the performance between our E2E ITS model
and a non-E2E ITS pipeline. A potential advantage of an E2E
architecture is reducing the number of parameters. In the stan-
dard non-E2E ITS pipeline, there are two encoders, an image
encoder for text recognition and a linguistic encoder for Mel-
spectrogram synthesis, and a g2p translator. Our E2E model
encodes an image for Mel-spectrogram synthesis with a sin-
gle image encoder.

We build a non-E2E ITS pipeline as the baseline. We de-
ploy the same architecture as the image encoder in ITS to
train an ITT model with MJSynth [3] and SynthText [19]. The
VAE-based TTS [21] is trained on the same dataset as the E2E
ITS model. Table 1 presents the PER, accuracy and the size
of parameters. The TTS system adopts an embedding layer
at the bottom to convert input phoneme indices into phoneme
embeddings. A phoneme’s embedding is universal. On the
other hand, our ITS system takes the image encoder’s hidden
representation to represent phonemes and this representation
is affected by variations related to the input image. Based on
this difference, we assume the phoneme representation is not
as robust as the embeddings. One of our future works will
evaluate how the robustness of representation impacts accu-
racy.

5.2. Inference Speed

Since we deploy non-autoregressive models for fast inference
speed, we compare the speed of our model with the non-E2E
pipeline used in Section 5.1. We evaluated the inference speed
with both recognition speed (images per second) and real-
time factor (RTF). The former is used in the ITT field and the
latter is used in the TTS field. Since the ITS pipeline has two
DNNs, we consider the summation of both DNNs’ inference
time of a given input as the pipeline’s inference time. We uti-
lize an Nvidia 2080Ti and synthesize Mel-spectrograms with
batch size 1. Table 2 shows that the E2E ITS is faster than the
ITS pipeline.

5.3. Impact of Data Distribution

Today’s TTS research focuses on evaluating sentence-level
performance [7, 9, 10, 12, 11] as well as the robustness on
long utterances [22]. Clarity of isolated words is rarely stud-
ied. However, since we are interested in deploying the ITS
system for reading isolated words, clear pronunciation is im-
portant. We noticed that both ITS and the VAE-based TTS
models perform better when synthesizing words with more

Model Name PER (%) Acc (%) Param
E2E ITS 4.7 87.8 6.1M

Non-E2E ITS pipeline 2.7 92.3 7.5M

Table 1. Phone error rate and word accuracy for the image-
to-speech systems. Vocoder is not included.

Model Name Speed(image/sec) RTF
E2E ITS 78.0 0.0167

Non-E2E ITS pipeline 59.9 0.0236

Table 2. Inference speed comparison.

Fig. 3. We categorize all testing samples based on their
phoneme length and present the model performance on
phoneme lengths between 2 and 8.

phonemes. When we sample similar amounts of images for
every word from MJSynth [3], the total sample size of 6+
phoneme words is higher. We think the sample distribution
over phoneme lengths is an essential factor to the model per-
formance.

To quantitatively evaluate this impact, we trained new
ITS and TTS models utilizing a training set with fewer short-
word samples and called these sets E2E ITS few and TTS few
respectively. We removed all samples that were drawn from
Synthtext [19] which are short words. Figure 3 shows that
E2E ITS trained with more short word samples performs
noticeably better than its counterpart while the performance
on longer words are slightly impacted. Moreover, ITS gains
more benefit from additional short training samples than TTS.

6. CONCLUSION

We propose the first non-autoregressive E2E ITS system by
introducing an intuitive sequence expansion module. This
module is flexible enough to accommodate a wide variety of
image encoders and Mel-spectrogram generators. Our ITS
model is small enough to deploy on mobile devices. More-
over, we demonstrate the importance of data distribution to
training ITS models. We will enhance the generality of the
image-to-phoneme representations in the future.
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