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ABSTRACT

Stereo image super-resolution aims to boost the performance
of image super-resolution by exploiting the supplementary in-
formation provided by binocular systems. Although previous
methods have achieved promising results, they did not fully
utilize the information of cross-view and intra-view. To fur-
ther unleash the potential of binocular images, in this letter,
we propose a novel Transformer-based parallax fusion mod-
ule called Parallax Fusion Transformer (PFT). PFT employs
a Cross-view Fusion Transformer (CVFT) to utilize cross-
view information and an Intra-view Refinement Transformer
(IVRT) for intra-view feature refinement. Meanwhile, we
adopted the Swin Transformer as the backbone for feature
extraction and SR reconstruction to form a pure Transformer
architecture called PFT-SSR. Extensive experiments and ab-
lation studies show that PFT-SSR achieves competitive results
and outperforms most SOTA methods. All code will be avail-
able.

Index Terms— Stereo Image Super-Resolution, Parallax
Fusion Transformer, Stereo Cross Attention, SSR.

1. INTRODUCTION

Binocular cameras have been widely employed to improve the
perception capabilities of vision systems in devices such as
self-driving vehicles and smartphones. With the rapid devel-
opment of binocular cameras, stereo image super-resolution
(SSR) is becoming increasingly popular in academia and
industry. Specifically, SSR attempts to reconstruct a high-
resolution (HR) image from a pair of low-resolution (LR)
images. With the help of additional information from a pair
of binocular images at the same physical location, making
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full use of the information from both two images is crucial
for stereo image super-resolution (SSR).

The easiest way to implement stereo image SR is to per-
form single image SR (SISR) methods [1–6] on stereo im-
age pairs, respectively. These approaches, however, neglected
the cross-view information between the pair of images and
are incapable of reconstructing high-quality images. To ad-
dress this problem, current strategies have focused on build-
ing novel cross-view feature aggregation modules, loss func-
tions, and so on, to improve the efficiency with which im-
age pair interaction features are used. For example, [7] first
combined depth estimation and image resolution tasks with
multiple image inputs. After that, StereoSR [8] took the lead
in introducing CNN into Stereo SR. iPASSR [9] suggested a
symmetric bi-directional parallax attention module (biPAM)
and an inline occlusion handling scheme as its cross view in-
teraction module to exploit symmetry cues for stereo image
SR. Recently, several more advanced strategies for improv-
ing Stereo SR performance have been introduced. For in-
stance, NAFSSR [10] designed a new CNN-based backbone
NAFNet [11] and proposed a novel Stereo Cross Attention
Module (SCAM) as parallax fusion block. These network
topologies typically included a CNN backbone for obtain-
ing intra-view information and a parallax fusion module for
combining cross-view attention. Since the existence of par-
allax, we discovered that it is also highly crucial for cross-
picture features and intra-picture features to promote each
other in the process of binocular feature fusion. However,
these two processes in existing works are often relatively in-
dependent, which is not conducive to the full use of image
features. Meanwhile, the quality of the input features is vital
for image fusion efficiency. However, existing works never
consider the degree of match between the backbone networks
and parallax fusion blocks. Therefore, the combination of
these two pieces will be sub-optimal.

In this work, we address the aforementioned problems by
introducing the Transformer to stereo image SR. Recently,
Transformer demonstrated strong performance in various
low-level tasks [12–14], which can learn global information
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Fig. 1: The complete architecture of the proposed Parallax Fusion Transformer for Stereo Image Super-Resolution (PFT-SSR).
This is a dual-stream network and interacts through an interaction module. Due to page limit, please zoom in to see details.

of images to further improve model performance. How-
ever, directly merging current CNN-based parallax fusion
modules (PFM) and Transformer will not result in outstand-
ing performance. This is because the CNN-based parallax
fusion modules and Transformer have different properties,
leading to PFM that cannot fully utilize the features from
the Transformer backbone. To address this issue, we de-
signed a new parallax fusion module, named Parallax Fusion
Transformer (PFT). PFT contains a Stereo Cross Attention
Module (SCAM) and a Feature Refining Module (FRM).
Among them, the SCAM gets the cross-view attention and
FRM will fuse the cross-view feature with the local window
features. The cross-view features and intra-view features (lo-
cal window features) will enhance each other to get a better
representation for image super-resolution task. With the help
of PFT, the proposed model can well-adapt the deep features
with the parallax feature fusion blocks to fully utilize the
representational potential of the Transformer.

The contributions of this letter can be summarized as fol-
lows: 1) We propose a novel Parallax Fusion Transformer
(PFT) layer with a Cross-view Fusion Transformer (CVFT)
and an Intra-view Refinement Transformer (IVRT). 2) Based
on the proposed PFT, we design a pure Transformer network
(named PFT-SSR) to further improve the feature extraction
ability of Transformer-based networks. 3) Extensive experi-
ments have illustrated the effectiveness of PFT-SSR.

2. METHODOLOGY

In this paper, we propose a Parallax Fusion Transformer for
Stereo Image Super-Resolution, called PFT-SSR. As shown
in Fig. 1, the proposed PFT-SSR consists of three parts:
stereo feature extraction, feature interaction, and SR image
reconstruction. For Stereo SR, the model takes two images
xLLR, xRLR ∈ RB×Cin×H×W as inputs and then outputs xLHR,
xRHR ∈ RB×Cout×S∗H×S∗W . Among them, B, Cin, Cout,
H , and W are the input batch size, the number of channels,
height, and weight, respectively. Meanwhile, S is the up-

scaling factor, which is used to control the size of the output
images. Specifically, we first use two convolutional layers to
extract shallow features of the input images respectively. Af-
ter that, we further extract the deeper feature representations
with SwinIR [13] backbone, which contains three consequent
Residual Swin Transformer Blocks (RSTBs)

ILd = fex(fs(x
L
LR)), IRd = fex(fs(x

R
LR)). (1)

Then, the extracted features are fed into the proposed Paral-
lax Fusion Transformers (PFT) for cross-view interaction and
intra-view refinement

ILf , I
R
f = fPFT (I

R
d , I

L
d ). (2)

With fused features, we apply RSTBs again to obtain the re-
fined features, with a residual connection from the shallow
image feature (ignored in formula for simplicity).

ILr = fcov(fre(I
L
f )), IRr = fcov(fre(I

R
f )). (3)

Finally, a Reconstruction module that contains a single con-
volutional layer and a PixelShuffle layer is used to reconstruct
the final SR images.

2.1. Swin Transformer Backbone

In this work, we use Swin Transformer Blocks [15] to build
the backbone of our network. Specifically, a Swin Trans-
former Layer firstly reshapes the input feature map Iin to
HW
M2 ×M2 × C and performs standard self-attention locally

on each window. For each of HW
M2 feature maps, let input be

X ∈ RM2×C , then query, key, and value should be

Q = XPQ, K = XPK , V = XPV , (4)

where PQ, PK , and PV are linear projection matrices. Then,
the attention matrix is calculated within the local windows

Attention(Q,K, V ) = SoftMax(QKT /
√
d+B)V, (5)



Fig. 2: Visual results (x4) achieved by different methods on Flickr1024.

Fig. 3: The architecture of stereo cross attention module.

where B is the positional encoding for Transformer. The
model also apply an MLP with two fully connected layers and
GELU non-linearity on the attention matrix for feature trans-
formations. Meanwhile, the LayerNorm [16] layer is added
before both Attention Block and MLP with residual connec-
tion. Though local attention can greatly reduce the amount
of computation, there is no connection across local windows.
To solve this problem, Swin Transformer proposed a shifted
window mechanism to shifts the feature map by (bM2 c, b

M
2 c)

pixels before partitioning. The process can be expressed as

X =MSA(LN(X)) +X,X =MLP (LN(X)) +X (6)

where regular partitioning and shift partitioning are used al-
ternately before each MSA. With the help of this backbone,
our model can extract sufficient useful image features.

2.2. Parallax Fusion Transformer

In order to make full use of the features of the left and right
images, we propose a Parallax Fusion Transformer (PFT).
As shown in Fig. 1, PFT contains 4 PFT blocks, and each
PFT block consists of 6 PFT layers and a convolutional layer.
Meanwhile, each PFT layer has two different Transformer

blocks, i.e. Cross-view Fusion Transformer (CVFT) and
Intra-view Refinement Transformer (IVRT). Among them,
CVFT adopts stereo cross-attention module (SCAM [10])
to learn the features of another view and IVRT takes the
local-window Transformer to better merge features from the
other view to its feature map. Specifically, we first apply
CVFT to achieve cross-view attention via SCAM. However,
using single-head SCAM to get the cross-view information
cannot adapt to different parallax. Therefore, we further use
IVRT to make cross-view information from the other branch
better interact with intra-view features. With this ’Attention-
Refine’ paradigm, our PFT-SSR shows a compelling effect
on cross-view attention.

Cross-view Fusion Transformer (CVFT): The core
component of CVFT is SCAM, and the whole process of
SCAM is shown in Fig. 3. Given input image features
XL, XR ∈ RH×W×C , we first perform layer normaliza-
tion to get scaled features. Due to the nature of stereo images,
we use the same Q and K for representing intra-view fea-
tures. Then, we get cross-view attention both from right to
left and from left to right by

FR→L = Attention(TL
1 XL, T

R
1 XR, T

R
2 XR),

FL→R = Attention(TR
1 XR, T

L
1 XL, T

L
2 XL),

(7)

where Attention is defined same as Eq. (5). Besides, TL
1 ,

TR
1 , TL

2 , and TR
2 are linear projection matrices. After getting

the cross-view attention feature, we use a weighted residual
connection to merge it to the corresponding image feature,
which are formulated as

YL = αLFR→L +XL, YR = αRFL→R +XR, (8)

where αL and αR are learnable scalars. After observing the
corrected features, we apply MLP and LayerNorm to get the
final outputs and the whole process can be expressed as

X = SCAM(X) +X,X =MLP (LN(X)) +X. (9)

Intra-view Refinement Transformer (IVRT): One key
difficulty of SSR is the different parallax brought by various



Table 1: Quantitative comparison on different datasets. PSNR/SSIM values achieved on both the left images (i.e., Left) and a
pair of stereo images (i.e., (Left + Right) /2) are reported. Among them, the best results are highlighted.

Method Scale Left (Left + Right) /2

KITTI 2012 KITTI 2015 Middlebury KITTI 2012 KITTI 2015 Middlebury Flickr1024
EDSR [3] ×2 30.83/0.9199 29.94/0.9231 34.84/0.9489 30.96/0.9228 30.73/0.9335 34.95/0.9492 28.66/0.9087
RCAN [17] ×2 30.88/0.9202 29.97/0.9231 34.80/0.9482 31.02/0.9232 30.77/0.9336 34.90/0.9486 28.63/0.9082
StereoSR [18] ×2 29.42/0.9040 28.53/0.9038 33.15/0.9343 29.51/0.9073 29.33/0.9168 33.23/0.9348 25.96/0.8599
PASSRnet [19] ×2 30.68/0.9159 29.81/0.9191 34.13/0.9421 30.81/0.9190 30.60/0.9300 34.23/0.9422 28.38/0.9038
iPASSR [9] ×2 30.97/0.9210 30.01/0.9234 34.41/0.9454 31.11/0.9240 30.81/0.9340 34.51/0.9454 28.60/0.9097
SSRDE-FNet [20] ×2 31.08/0.9224 30.10/0.9245 35.02/0.9508 31.23/0.9254 30.90/0.9352 35.09/0.9511 28.85/0.9132
PFT-SSR (Ous) ×2 31.15/0.9166 30.16/0.9187 35.08/0.9516 31.29/0.9195 30.96/0.9306 35.21/0.9520 29.05/0.9049
EDSR [3] ×4 26.26/0.7954 25.38/0.7811 29.15/0.8383 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285
RCAN [17] ×4 26.36/0.7968 25.53/0.7836 29.20/0.8381 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286
StereoSR [18] ×4 24.49/0.7502 23.67/0.7273 27.70/0.8036 24.53/0.7555 24.21/0.7511 27.64/0.8022 21.70/0.6460
PASSRnet [19] ×4 26.26/0.7919 25.41/0.7772 28.61/0.8232 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195
SRRes+SAM ×4 26.35/0.7957 25.55/0.7825 28.76/0.8287 26.44/0.8018 26.22/0.8054 28.83/0.8290 23.27/0.7233
iPASSR [9] ×4 26.47/0.7993 25.61/0.7850 29.07/0.8363 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287
SSRDE-FNet [20] ×4 26.61/0.8028 25.74/0.7884 29.29/0.8407 26.70/0.8082 26.45/0.8118 29.38/0.8411 23.59/0.7352
PFT-SSR (Ours) ×4 26.64/0.7913 25.76/0.7775 29.58/0.8418 26.77/0.7998 26.54/0.8083 29.74/0.8426 23.89/0.7277

stereo systems. Although SCAM shows great cross-view at-
tention ability, it cannot adapt various parallax. After observ-
ing this, we used a Transformer with local-window attention
for feature refinement. Regular partitioning is adopted before
the MSA so that the features after the interaction of the two
views can be further fused and enhanced, which is helpful for
the final SR image reconstruction.

3. EXPERIMENT

3.1. Experimental Settings

800 images from Flickr1024 [21] and 60 images from Mid-
dlebury [22] are chosen for training. To make the Middle-
bury dataset matches the spatial resolution of the Flickr1024
dataset, we perform bicubic downsampling by a factor of 2 on
each image. And then, we use bicubic downsampling to these
GT images by the factors of 2 and 4 to get the input images.
We follow previous works [9, 10, 20] on this setting to make
comparison fair. During training, we use the L1 loss function
for supervision, PSNR and SSIM as quantitative metrics to
make easy comparison with previous methods. These metrics
are calculated on RGB color space with a pair of stereo im-
ages. To evaluate SR results, we use KITTI 2012 [23], KITTI
2015 [24], Middlebury [22], and Flickr1024 [21] for test.

3.2. Comparison to state-of-the-art methods

We compare our proposed PFT-SSR with several state-of-
the-art methods, including SISR methods (e.g., EDSR [3],
RCAN [17]) and stereo image SR methods (e.g., Stere-
oSR [18], PASSRnet [19], iPASSR [9], and SSRDE-FNett [20]).
According to TABLE 1, we can clearly observe that our PFT-
SSR achieves outstanding results and outperforms most other
SOTA methods, especially on Flickr102. Meanwhile, we also
show the qualitative comparisons in Figs. 2. Obviously, our
PFT-SSR can reconstruct more accurate SR images with more

Table 2: Ablation study on PFT under Flickr1024.

Backbone Module PSNR (x4) SSIM (x4)
Swin Transformer None 23.54 0.7120
Swin Transformer RSTB (SwinIR) 23.65 0.7164
Swin Transformer BiPAM 23.42 0.7068
Swin Transformer PFT (Ours) 23.83 0.7268

accurate edges and texture details. This fully demonstrates
the effectiveness of the proposed PFT-SSR.

3.3. Ablation Study

Cross-view interaction is the key part in Stereo SR. In this
part, we do ablation on the choice of this technology to show
the strong stereo image fusion ability of the proposed PFT. We
use Swin Transformer [15] Blocks as backbones and take the
same number of Swin Transformer, biPAM [9], and our pro-
posed PFT as the cross-view interaction module in this part.
According to TABLE 2, it is obviously that the proposed PFT
can improve the model performance more effectively, which
fully illustrates the effectiveness of PFT.

4. CONCLUSION

In this paper, we proposed a PFT-SSR for stereo image super-
resolution, which contains a well-designed Parallax Fusion
Transformer (PFT). PFT consists of a Cross-view Fusion
Transformer (CVFT) and an Intra-view Refinement Trans-
former (IVRT), specially designed for cross-view interaction.
It is worth mentioning that PFT can better merge different
parallaxes to utilize the features of the left and right images
fully. Meanwhile, PFT can also better adapt to the current
popular Transformer-based backbone. Extensive experiments
show that PFT-SSR outperforms most current models and
achieves promising outcomes.
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