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ABSTRACT

Development of advance surface Electromyogram (sEMG)-based
Human-Machine Interface (HMI) systems is of paramount im-
portance to pave the way towards emergence of futuristic Cyber-
Physical-Human (CPH) worlds. In this context, the main focus
of recent literature was on development of different Deep Neu-
ral Network (DNN)-based architectures that perform Hand Gesture
Recognition (HGR) at a macroscopic level (i.e., directly from sEMG
signals). At the same time, advancements in acquisition of High-
Density sEMG signals (HD-sEMG) have resulted in a surge of
significant interest on sEMG decomposition techniques to extract
microscopic neural drive information. However, due to complexities
of sEMG decomposition and added computational overhead, HGR
at microscopic level is less explored than its aforementioned DNN-
based counterparts. In this regard, we propose the HYDRA-HGR
framework, which is a hybrid model that simultaneously extracts
a set of temporal and spatial features through its two independent
Vision Transformer (ViT)-based parallel architectures (the so called
Macro and Micro paths). The Macro Path is trained directly on
the pre-processed HD-sEMG signals, while the Micro path is fed
with the p-to-p values of the extracted Motor Unit Action Potentials
(MUAPs) of each source. Extracted features at macroscopic and mi-
croscopic levels are then coupled via a Fully Connected (FC) fusion
layer. We evaluate the proposed hybrid HYDRA-HGR framework
through a recently released HD-sEMG dataset, and show that it sig-
nificantly outperforms its stand-alone counterparts. The proposed
HYDRA-HGR framework achieves average accuracy of 94.86% for
the 250 ms window size, which is 5.52 % and 8.22 % higher than
that of the Macro and Micro paths, respectively.

Index Terms— Biological Signal Processing, Deep Neural Net-
works, Human-Machine Interface, sEMG Decomposition.

1. INTRODUCTION
In recent years, development of prosthetic Human-Machine Inter-
face (HMI) systems [1] has greatly improved lives of those suffer-
ing from amputated limb(s) or neuromuscular disorders. Gener-
ally speaking, recent HMI systems [2] are mainly controlled with
a learning model developed based on Biological Signal Processing
(BSP) algorithms. Learning-based algorithms developed for poten-
tial use in prosthetic HMI devices are primarily comprised of ad-
vanced Machine Learning (ML) models [3] or Deep Neural Net-
works (DNNs) [4] that perform Hand Gesture Recognition (HGR)
via surface Electromyogram (sEMG) signals. To secure high per-
formance and proper control in HGR tasks, attention is directed to
DNNs and/or hybrid architectures because of their proven capabil-
ities in tackling challenging real-life problems [5–7]. Such mod-

els, however, are still prone to several major challenges such as
high latency, large training times, undue complexity, and difficulty
in finding the discriminative patterns in sEMG signals of different
hand gestures. Accordingly, designing an accurate HGR method that
can be effectively adopted in an HMI system addressing the above-
mentioned issues is the centerpiece of today’s gesture recognition-
based research works.
Literature Review: sEMG signals measure the electrical activities
of the underlying motor units in limb muscles and are collected non-
invasively from the electrodes placed on skin surface [8]. In partic-
ular, High Density sEMG (HD-sEMG) signals are acquired through
a two-dimensional (2D) grid with a large number of closely-located
electrodes [9], capturing both temporal and spatial information of
muscle activities. HD-sEMG acquisition, therefore, provides supe-
rior spatial resolution of the neuromuscular system in comparison to
its sparse acquisition counterpart. This has inspired targeted focus on
development of DNN-based HGR methods based on HD-sEMG sig-
nals [10–13]. Broadly speaking, HD-sEMG-based BSP approaches
can be classified into the following two main categories:

(i) Raw HD-sEMG Processing for HGR: Algorithms belonging to
this category directly use raw HD-sEMG signals for the task of
HGR. In this context, e.g., Reference [11] performed instanta-
neous training of a Convolutional Neural Network (CNN) using a
2D image of a single time measurement. In [12], Recurrent Neu-
ral Networks (RNNs) are combined with CNNs to create a hybrid
attention-based [14] CNN-RNN architecture, which has improved
HGR performance due to joint incorporation of spatial and tem-
poral features of HD-sEMG signals. Sun et al. [13] introduced a
network of dilated Long Short-Term Memories (LSTMs) to clas-
sify hand gestures from the transient phase of HD-sEMG signals.

(ii) HD-sEMG Decomposition: The focus here is on HD-sEMG de-
composition to extract microscopic neural drive information. HD-
sEMG signals have encouraged emergence of sEMG decomposi-
tion algorithms in the last decade [15] as they provide a signif-
icantly high-resolution 2D image of Motor Unit (MU) activities
in each time point. sEMG decomposition refers to a set of Blind
Source Separation (BSS) [16] methods that extract discharge tim-
ings of motor neuron action potentials from raw HD-sEMG data.
Single motor neuron action potentials are summed to form Motor
Unit Action Potentials (MUAPs) that convert neural drive infor-
mation to hand movements [17]. Motor unit discharge timings,
also known as Motor Unit Spike Trains (MUSTs), represent sparse
estimations of the MU activation times with the same sampling
frequency and time interval as the raw HD-sEMG signals [18].
Extracted MUSTs are used in several domains such as identifi-
cation of motor neuron diseases [19], analysis of neuromuscular
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conditions [20], and myoelectric pattern recognition [21].
A third category can be identified when the extracted MUSTs in
Category (ii) are used for HGR at microscopic level. HD-sEMG
signals are modelled as a spatio-temporal convolution of MUSTs,
which provide an exact physiological description of how each hand
movement is encoded at neurospinal level [22]. Thus, MUSTs are
of trustworthy and discernible information on the generation details
of different hand gestures, which leads to adoption of another group
of HGR algorithms that accept MUSTs [23] as their input. Never-
theless, due to complexities of the decomposition stage and added
computational overhead, microscopic level HGR using MUST is
less explored than models of Category (i), which use HD-sEMG
signals at a macroscopic level. There are, however, some promis-
ing works [1, 21, 24] in which MUSTs carrying microscopic neural
drive information are exploited for HGR instead of directly using
raw sEMG signals. To discover a direct connection between different
hand gestures and extracted MUSTs, these methods have suggested
estimating MUAPs of the identified sources and extracting a set of
useful features from MUAPs that are unique for each hand gesture.
For instance, in [21], the peak-to-peak (p-to-p) values of MUAPs are
calculated for each MU and each electrode channel separately and a
2D image of MUAP p-to-p are constructed for all the channels of a
single MU. Afterwards, this 2D image is fed to a CNN architecture
and its performance is compared to that of traditional ML methods.
In short, using HD-sEMG decomposition results for HGR is still in
its infancy, and in this paper, we aim to further advance this domain.
Contributions: In this paper, for the first time to the best of our
knowledge, we introduce the idea of integrating the macroscopic
and microscopic neural drive information obtained from HD-sEMG
data into a hybrid framework for HGR. As indicated in [5, 10], Vi-
sion Transformers (ViTs) [25] are proved to surpass the most popu-
lar DNN architectures like CNNs and hybrid CNN-RNN models in
HGR tasks, using either sparse or HD-sEMG datasets. Being mo-
tivated by this fact, here, we propose a framework that consists of
two independent ViT-based architectures that work on the basis of
the attention mechanism [10]. While one of these ViTs is trained di-
rectly on the preprocessed HD-sEMG data, the other one is fed with
the p-to-p values of the extracted MUAPs of each source. Thereby,
a set of temporal and spatial features of various hand movements are
extracted from HD-sEMG signals and MUAPs, which are then fused
via a Fully Connected (FC) fusion layer for final classification. We
show that by extracting a very small number of underlying sources
(maximum of 7 sources in this case), the proposed method improves
the overall classification accuracy compared to its counterparts. In
brief, contributions of the paper are as follows:

• Introducing, for the first time to the best of our knowledge, the
idea of integrating macroscopic and microscopic neural drive in-
formation through a hybrid DNN framework for HGR.

• Simultaneous utilization of raw HD-sEMG signals and extracted
MUSTs from HD-sEMG decomposition via parallel construction
of two ViT-based architectures.

2. MATERIALS AND METHOD
In this section, first, we introduce the dataset used to develop the
proposed hybrid HYDRA-HGR . Afterwards, we briefly describe
the transformer architecture as its building block.
2.1. Dataset
The utilized dataset [26] in this study is a HD-sEMG collection of 20
non-disabled participants that performed 65 isometric hand move-
ments in 5 repetitions. One of the movements is performed twice,
therefore, we have 66 gestures in total. The dataset is a set of 1-, 2-

Fig. 1. The proposed HYDRA-HGR: (a) The ViT-based models in the
Macro and Micro paths are trained based on 3D, HD-sEMG and 2D, p-to-
p MUAP images, respectively. The final Micro and Macro class tokens are
concatenated and converted to a 1, 024-dimensional feature vector, which is
fed to a series of FC layers. (b) The transformer encoder.
and multiple-degree of freedom hand gestures. There are two high-
density grids, each with 64 (8× 8) electrodes and an inter-electrode
distance of 10mm, placed on the flexor and extensor muscles to
record the sEMG signals with the sampling frequency of 2, 048 Hz
(Quattrocento, OT Bioelettronica, Torino, Italy).

2.2. Transformer Architecture
The proposed framework is originated from the ViT architecture in
which the attention mechanism is deployed to find the similarities
among different parts of the input data. In a ViT, the input, which is
normally a three-dimensional (3D) image, is first divided into sev-
eral patches and the sequence of patches are then fed as the main
input. In the next stage, the 3D input patches are first flattened and
then go through a patch embedding block, which converts each small
flattened patch to an embedded vector to make them clearly under-
standable by the transformer network. This process is referred to
as the linear projection of patches. Moreover, to encapsulate the
learned information obtained during the training phase in a single
vector, a zero vector (called the class token) is concatenated to the
embedded patches similar to the BERT architecture [27]. In this
way, the final classification decision is made only based on the class
token, which is attributed as the network’s placeholder that prevents
making decisions that are biased towards any of the patches as such
reduces the number of trainable parameters in the model. ViTs, in
contrast to RNNs, receive their input data in parallel, which makes
it difficult for the network to identify the correct order in time-series
data. Therefore, a trainable positional embedding vector is added to
all the input patches, helping the network to understand their posi-
tion more efficiently. These steps result in matrix Z0 as the input to
the transformer encoder, which is given by

Z0 = [xp
0;xp

1E;xp
2E; . . . ;xp

NE] +Epos, (1)

where, N is the number of patches, xp
i represents the flattened

patches that are multiplied by an embedding matrix E, prepended
with an all-zero class token and eventually added to a positional
embedding matrix Epos. Note that all the embedded patches before
and after going to the patch embedding block are of size d, which
is the embedding dimension of the model that remains constant
throughout all the training steps. Subsequently, Z0 is fed to the
transformer encoder that contains the Multiheaded Self-Attention
(MSA) mechanism in which the patches are divided into several par-
allel layers (heads). The scaled dot-product attention is distinctively



found in each head. The corresponding results for each head are
given to a feed forward layer and then, joined together to form the
final decision. The attention metric is calculated based on different
d-dimensional Queries (Q), Keys (K) and Values (V ) as follows

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V . (2)

The output matrix of the transformer encoder is then given by

Z0 = [zp
0 ;zp

1 ; . . . ;zp
N ] = Feed-Forward(LN(Z0)) + Z0, (3)

where Z0 = MSA(LN(Z0)) +Z0, (4)

and zp
i is the final output for the ith patch, and LN stands for the

layer normalization block. In the last stage, the output class token
(zp

0 ) is forwarded to a linear layer to form the classification target.
This completes an overview of the preliminary material, next, we
present the proposed HYDRA-HGR framework.

3. PROPOSED HYDRA-HGR ARCHITECTURE
In this section, we present the proposed hybrid ViT-based architec-
ture that couples HD-sEMG signals and their extracted MUAPs. The
HYDRA-HGR framework simultaneously extracts a set of temporal
and spatial features through its two independent ViT-based parallel
paths. The Macro Path is trained directly on the pre-processed HD-
sEMG signals, while the Micro path is fed with the p-to-p values
of the extracted MUAPs of each source. A fusion path, structured in
series to the parallel ones and consisting of FC layers, then combines
extracted temporal and spatial features for final classification.

3.1. Macro Path: Extraction of Macroscopic Information
In this sub-section, we present the Macro Path of the HYDRA-HGR
framework, which directly learns from raw HD-sEMG signals. As
HD-sEMG signals are of 3 dimensions, i.e., one dimension in time
and two dimensions in space, they can directly be fed to a ViT that
is designed for 3D images. The raw HD-sEMG signals, however,
should be first pre-processed to be entirely compatible with the ViT’s
input format. First, the positive envelop of the data is found via a
low-pass butterworth filter (at 1Hz), which is applied to signals of
each electrode independently [10, 11]. Then, the filtered signals are
normalized through the µ-law algorithm [28], which increases the
selectivity power of the model. Following that, each HD-sEMG rep-
etition is split into windows of size 512 (250 ms) with a skip step of
256, which means 50% of overlap among consecutive windows. The
proposed framework takes each data segment with shape (512,8,16)
as input and outputs the predicted label among 66 gestures.

3.2. Micro Path: Extraction of Microscopic Neural Drive Info.
Here, first, we present the fundamentals of the developed BSS algo-
rithm for extracting MUSTs from HD-sEMG signals. Then we elab-
orate on how the HYDRA-HGR framework is employed for classifi-
cation of MUAPs as a by-product of the BSS method. Multi-channel
sEMG signals are generated as a convolutive mixture of a set of im-
pulse trains representing the discharge timings of multiple MUs, i.e.,

xi(t) = ΣL−1
l=0 ΣN

j=1hij(l)sj(t− l) + νi(t), (5)

where xi(t) is the ith channel’s EMG data (from the entireM chan-
nels); hij(l) is the action potential of the jth MU (from the entire
N extracted MUs) measured at the ith channel; sj(t) is the MUST
at the jth MU, and; νi is the additive white noise at channel i. Ad-
ditionally, t is the time index; D is the duration of sEMG record-
ings; and L is the duration of MUAPs. Eq. (5) is represented in
matrix form as

X(t) = ΣL−1
l=0 H(l)S(t− l) + ν(t), (6)

whereX(t)=[x1(t),x2(t), . . . ,xM (t)]T andS(t)=[s1(t), s2(t),
. . . , sN (t)]T are the recordings of all the M electrode channels and
the MUSTs of all the N extracted sources at time t, respectively.
Term H(l) is the (M × N ) matrix of action potentials, which is
considered to be constant in duration D. The convolutive equality
of Eq. (6) is the basic BSS assumption.

The objective is to find the maximum number of independent
matrices S(t) from Eq. (6) if X(t) is the only known parameter.
Eq. (6) can be written in an instantaneous form, where the source
vectors are extended with their L − 1 delayed contributions. Ad-
ditionally, to adapt the model for BSS conversions, the observation
vectors are extended with their T delayed versions, resulting in the
following final convolutive model

X̃(t) = H̃ S̃(t) + ν̃(t), (7)

where each of the X̃(t), H̃ , S̃(t), and ν̃(t) are the extended ver-
sions of the observation, MUAPS, sources, and noise matrices, re-
spectively. Among the existing BSS approaches [15] suggested for
HD-sEMG decomposition, gradient Convolution Kernel Compensa-
tion (gCKC) [29,30] and fast Independent Component Analysis (fas-
tICA) [31] are of great prominence and frequently used in the liter-
ature. To achieve better accuracy, the utilized BSS algorithm [15] is
a combination of gCKC [29,30] and fastICA [31] algorithms. In the
gCKC method, the MUSTs are estimated using a linear Minimum
Mean Square Error (MMSE) estimator as follows

ŝj(t) = ĉTsjxC
−1
xx x(t), (8)

in which ŝj(t) is the estimate of the jth MUST at time t, ĉsjx ≈
E{x(t)sj

T (t)} is approximation of the unknown cross-correlation
vector between the MUSTs and the observations, and Cxx =
E{x(t)xT (t)} is the correlation matrix of observations. Term
E{·} indicates the mathematical expectation. According to Eq. (8),
as ĉsjx is unknown, a blind estimation of MUSTs is iteratively
found with gradient descent [29]. On the other hand, in the fastICA,
the goal is to estimate separation vectors w such that

ŝj(t) = wT
j (k)Z(t), (9)

where ŝj is the jth MUST; wj is the jth separation vector; and Z
is the whitened matrix of observations. The separation vectors are
identified through the fixed-point optimization algorithm [15, 31].
Note that term k in Eq. (9) denotes the separation vector identifying
fixed-point iterations. To provide analogous inputs for the Macro
and Micro ViT-based models, we extracted MUSTs for windowed
HD-sEMG signals of shape (512,8,16), separately. The number of
iterations for estimating a new source is set to 7, therefore, a maxi-
mum of 7 sources that are either sparse or uncorrelated at time lag
zero are found for each window. The length of MUAPs (L) that
are computed from extracted MUSTs in the next step are assumed
to be 20 samples. As stated in [15], extension factor T in Eq. (7)
multiplied by the number of sEMG channels should be greater than
the number of extracted sources multiplied by the length of MUAPs.
Furthermore, it is empirically shown that extension factors greater
than 16 have almost the same impact on the number and quality
of extracted MUSTs. Therefore, we set extension factor to 20 to
be greater than N×L

M
. The silhouette threshold determining which

sources are of acceptable quality in each iteration is set to 0.92.
After extracting MUSTs for all the windows, the MUAP wave-

form for each channel and each extracted MU is calculated with the
Spike-Triggered Averaging (STA) technique [1]. Following the work
of [32], MUSTs are divided by a sliding window of 256 samples with
skip size of 256, a MUAP of length 20 is calculated for each window



Table 1. Comparison of classification accuracy and STD for each fold and their average. The accuracy and STD for each fold is averaged over 19 subjects.
Model’s Name Fold1(%) Fold2 Fold3 Fold4 Fold5 Average

Stand-alone Macro Model 79.92 (±3.39) 91.43 (±2.48) 93.84 (±2.05) 92.57 (±2.28) 88.96 (±2.83) 89.34 (±2.61)
Stand-alone Micro Model 81.53 (±3.45) 88.03 (±2.66) 89.63 (±2.39) 89.11 (±4.02) 84.92 (±2.97) 86.64 (±3.10)

The HYDRA-HGR 89.38 (±2.88) 96.86 (±1.82) 96.82 (±1.75) 96.65 (±2.75) 94.61 (±1.90) 94.86 (±2.22)

Fig. 2. (a) Diagram of the adopted procedures for obtaining MUAP p-to-p
images. (b) MUAPs for a single MU of the first windowed signal correspond-
ing to the first repetition of gesture 1 (bending the little finger). The MUAPs
are estimated/shown for each channel separately. (c) p-to-p values of MUAPs
represented as a 2D image. (d) 3D representation of MUAP p-to-p values.

Fig. 3. Boxplots and IQR of the 3 models over all the 19 subjects.
distinctly and the results are summed to give the final MUAP wave-
form. In such a way, 128 (8× 16) MUAPs are acquired for each ex-
tracted source. In the final stage, the p-to-p values of each MUAP is
calculated and fed to the Micro path’s ViT-based architecture as a 2D
(8× 16) image. This 2D image indicates the relative activation level
of the neural drive under the area covered by the electrode grids,
which is unique for each hand gesture. A summary of the adopted
procedures from taking the raw HD-sEMG signals to calculating the
MUAP p-to-p images is shown in Fig. 2(a). Fig. 2(b-d) illustrate the
extracted MUAPs for a single MU of the first 512-sample window of
gesture 1 (bending the little finger), 2D image of their p-to-p values,
and a 3D representation of the p-to-p values, respectively. As can
be seen, the muscles under the electrodes of the extensor grid were
more active in the course of bending the little finger.
3.3. Combining the Two ViT-based Architectures
Before fusing the Macro and Micro neural information (extracted
via the two ViT-based paths), each model is trained separately on
its input dataset. Then, each model’s weights are frozen and the FC
layers at the end of each network that take the class token for classi-
fication are removed. Instead, the class tokens with shape of (1× d)
and (7× d) for Macro network and Micro network, respectively, are
concatenated and flattened. Here, 1 represents the number of 512-
sample HD-sEMG signals, 7 is the number of extracted MUs for
each window, and d is the model’s embedding dimension. The final
feature vector has a dimension of 1, 024 (8 × 128), which is fed to
two consecutive FC trainable layers to form the classification results.

4. EXPERIMENTAL RESULTS
In this section, we evaluate classification accuracy and standard de-
viation (STD) of the Micro and Macro paths and the final fusion

accuracy of the HYDRA-HGR. To facilitate a fair comparison be-
tween our study and future research works, we performed a 5-fold
cross validation, in which one repetition is opted out from training
and used in testing each time. The mean accuracy among the par-
ticipants is calculated for all the folds and their average is reported
at the end. As one of the subjects in the dataset had incomplete
information, all the studies are performed based on the recorded sig-
nals of 19 subjects. In the first experiment, windowed HD-sEMG
signals are given to the Macro ViT-based architecture. In this archi-
tecture, the image size and the number of input channels are set to
(512 × 16) and 8, respectively. The patch size is set to (8 × 16)
implying that there are 64 temporal patches for each window. The
model’s embedding dimension (d) is 128 and the patches are divided
into 8 parallel heads in the transformer encoder. Adam optimizer is
used with learning rate of 0.0001 and weight decay of 0.001. The
network is trained with 20 epochs with each batch containing 128
data samples. In the second experiment, 2D MUAP p-to-p images
are fed to the Micro ViT-based architecture. In this architecture, the
image size and the number of input channels are set to (8 × 16), 1
respectively. The patch size is set to (8 × 8) implying that there are
2 spatial patches for each p-to-p image, each corresponding to an
(8 × 8) electrode grid. The model’s embedding dimension (d) and
number of heads is the same as its Macro counterpart. Similarly,
Adam optimizer is used with learning rate of 0.0003 and weight de-
cay of 0.001. The network is trained with 50 epochs with each batch
containing 64 data samples. Each data sample, in this case, has a
maximum of 7 MUAP p-to-p images. Finally, in the third experi-
ment, both Macro and Micro ViT-based architectures are frozen, the
feature vectors/matrices from each model are concatenated and fed
to two trainable FC layers that map 1024 features to 128 and 128
to 66 which is the number of gestures in our study. This network is
trained with 20 epochs and a batch size of 128 samples. Similarly,
Adam optimizer is used with learning rate of 0.0005 and weight de-
cay of 0.0001. A comparison of each model’s accuracy and STD
for each fold is represented in Table 1. The box plots showing ac-
curacy and InterQuartile Range (IQR) measured for 19 subjects is
represented in Fig. 3 for each model. As can be seen in Table 1, the
Macro Model’s accuracy is, ≈ 3− 4% better than that of the Micro
Model for each fold. However, the HYDRA-HGR improves the ac-
curacy of each fold by at least 3% and the average accuracy of all the
folds by 5.52%. Additionally, according to Fig. 3, Micro Model has
the least IQR and the HYDRA-HGR stands significantly higher than
the stand-alone models in terms of its accuracy among 19 subjects.

5. CONCLUSION
In this paper, a DNN-based model for classification of hand ges-
tures from HD-sEMG signals is proposed in which two ViT-based
architectures are fused to outperform the case of adopting each ar-
chitecture singly. The training procedure in the proposed method
comprises two stages; During the former, ViT-based architectures
are trained separately on HD-sEMG signals and p-to-p values of the
extracted MUAPs from raw HD-sEMG signals. In the latter, both
models’ weights are kept fixed and the feature sets obtained in their
last layer are joined and given to two FC layers for final classifica-
tion. We show that the classification accuracy of the fused frame-
work is, on average, 5.52% and 8.22% greater than that of Macro
and Micro Models, respectively.
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[26] N. Malešević, A. Olsson, P. Sager, E. Andersson, C. Cipriani, M. Con-
trozzi, A. Björkman, and C. Antfolk, “A database of high-density sur-
face electromyogram signals comprising 65 isometric hand gestures,”
Scientific Data, vol. 8, no. 1, pp. 1–10, 2021.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[28] E. Rahimian, S. Zabihi, S. F. Atashzar, A. Asif, and A. Moham-
madi, “Xceptiontime: Independent time-window xceptiontime archi-
tecture for hand gesture classification,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 1304–1308.

[29] A. Holobar and D. Zazula, “Gradient convolution kernel compensation
applied to surface electromyograms,” in International Conference on
Independent Component Analysis and Signal Separation. Springer,
2007, pp. 617–624.

[30] ——, “Multichannel blind source separation using convolution ker-
nel compensation,” IEEE Transactions on Signal Processing, vol. 55,
no. 9, pp. 4487–4496, 2007.

[31] M. Chen and P. Zhou, “A novel framework based on fastica for high
density surface emg decomposition,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 24, no. 1, pp. 117–127,
2015.

[32] X. Hu, W. Z. Rymer, and N. L. Suresh, “Reliability of spike triggered
averaging of the surface electromyogram for motor unit action poten-
tial estimation,” Muscle & nerve, vol. 48, no. 4, pp. 557–570, 2013.


