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ABSTRACT

We propose a direct imaging method for the detection of exo-
planets based on a combined low-rank plus structured sparse
model. For this task, we develop a dictionary of possible ef-
fective circular trajectories a planet can take during the obser-
vation time, elements of which can be efficiently computed
using rotation and convolution operation. We design a simple
alternating iterative hard-thresholding algorithm that jointly
promotes a low-rank background and a sparse exoplanet fore-
ground, to solve the non-convex optimisation problem. The
experimental comparison on the β-Pictoris exoplanet bench-
mark dataset shows that our method has the potential to out-
perform the widely used Annular PCA for specific planet light
intensities in terms of the Receiver operating characteristic
(ROC) curves.

Index Terms— exoplanet detection, direct imaging, an-
gular differential imaging, low-rank plus sparse matrix

1. INTRODUCTION

Identification, confirmation, and characterization of planets
in nearby solar systems is a key challenge in astronomy. The
number of confirmed exoplanets recently surpassed 5000
planets, most of these accomplished by indirect imaging
methods in the past 30 years [1].

Indirect imaging methods are based on measuring the ef-
fect a planet has on the starlight reaching the Earth, such as
when a planet obstructs the light of the star, called the tran-
sit method. As such, they are limited to specific alignment
between the planet, the star, and the observer, and biased to-
wards close and massive planets orbiting old quiet stars [2].

In comparison, directly imaging exoplanets is a much
more difficult task. The challenge arises mostly due to their
extremely faint light source compared to their parent star,
which can be sometimes about a billion times as bright [3].
This requires a telescope that can capture images of both
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high-resolution and high contrast, which is generally done
from the ground, using the largest optical telescopes equipped
with dedicated instrumentation. However, images acquired
with ground-based telescopes are subject to noise caused by
atmospheric turbulence resulting in a high-intensity noise
called quasi-static speckles. Inconveniently, the quasi-static
speckled noise is very similar in shape and intensity to the
planet companions making their detection by direct imaging
a challenging task.

Angular differential imaging (ADI) is the leading method
for direct imaging of exoplanets, which, when combined with
clever image post-processing techniques, can remove most
of the quasi-static speckled noise [4]. Its idea is to take a
sequence of images over a single night of observation with-
out compensating for the Earth’s rotation. As a result, planet
companions in the captured sequence of images follow cir-
cular trajectories of known angular velocity, while the star
and the quasi-static speckles, which get introduced only when
the light passes through the Earth’s atmosphere, remain fixed
with respect to the telescope. From a datacube of such obser-
vations, it then becomes possible to estimate the quasi-static
speckles and subtract them from the original observations.

Many of the most successful methods for removal of
the quasi-static speckled noise are based on low-rank matrix
models, such as principal component analysis (PCA) [5, 6],
its annular version (AnnPCA) [7], the low-rank plus sparse
method (LLSG) [3], and the morphological component anal-
ysis (MAYO) [8]. The rationale behind the low-rank models
is that the bright, quasi-static speckles that appear as static
elements with slowly changing light intensity, are captured
by the first few principal components, while the higher-rank
moving planets are excluded from the model.

Following the subtraction of the quasi-static speckled
background, the typical next step in the ADI pipeline is the
estimation of the light intensity of possible planet compan-
ions, referred to as the flux estimation. Classical approaches
take into account the point spread function (PSF) of the opti-
cal device with the known angular velocity and are median-
based [4] or likelihood based [9, 2]. More recently, MAYO
proposed to employ an image sparsifying transform to model
general rotating objects which allows it to detect also circum-
stellar discs [8].
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Fig. 1: The result of the low-rank plus sparse trajectory (LRPT) method applied to the β-Pictoris dataset with the real planet.
We show a single frame t of the low-rank component, which captures the quasi-static speckled noise, and the Ψ(P ) component
which detects the rotating planet.

A key image processing challenge in the ADI pipeline is
to be able to distinguish the moving planets from the quasi-
static speckles as they are of similar intensities and resolution.
A limitation of the ADI pipeline is that it works in steps: it
assumes a low-rank model for the quasi-static speckles, sub-
tracts the result, and then it proceeds to estimate the flux of
possible planets.

Methods such as LLSG [3] and the MAYO pipeline [8]
have been developed with these issues in mind. In LLSG,
the authors propose to perform low-rank plus sparse decom-
position, which prevents accidentally subtracting the planet
from the datacube by accounting for sparse outliers that can
capture the planet. However, the issue here is that the sparse
component could also capture a quasi-static speckle since it
does not assume that the planet needs to move smoothly in
a circular trajectory. The most similar to our approach is the
MAYO method [8], which assumes both a low-rank model
for the quasi-speckled background and a circular trajectory of
the planet. However, whereas MAYO performs these tasks as
part of a multi-step pipeline, in this work, we employ an al-
ternating hard thresholding algorithm [10] that solves them at
once as part of a single optimization problem.

In this paper, we propose to employ a low-rank plus
sparse trajectory method (LRPT) that estimates the low-rank
component while trying to find a small number of viable
planet trajectories based on a low-rank plus sparse decompo-
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Fig. 2: Illustration of the trajectorlet transform: (left) depicts
a matrix P ∈ R35×35 with P25,25 = 1 and 0 otherwise, (cen-
ter) shows Ψ(P ), i.e., a single element of the dictionary de-
noted Ψ25,25, (right) shows the PSF of the optical device.

sition [10]. We develop a linear transform, referred to as the
trajectorlet transform, which takes into account the knowl-
edge of possible planet trajectories and can be computed
efficiently using convolution operations and rotation.

The paper is structured as follows. The following Sec-
tion 2 introduces the low-rank plus sparse model and the tra-
jectorlet transform. In Section 3, we present experimental
results and comparisons of the method with other standard
methods. Finally, Section 4 concludes the paper and suggests
further research directions using this model.

2. DIRECT IMAGING WITH LOW-RANK PLUS
SPARSE MODEL

Let X ∈ RT×N2

be the matrix of observations whose rows
are the N × N image frames of the video sequence with T
frames that contains an unknown small number of planets as
well as the quasi-static speckle noise. Our model for X , de-
picted in Fig. 1, is expressed as

X = L+ Ψ(P ) + E

s.t. rank(L) ≤ r, ‖P‖0 ≤ s, Pi,j ≥ 0,
(1)

where L ∈ RT×N2

is the rank-r component which models
the quasi-static speckles, Ψ(P ) is the component containing
the rotating planets with P ∈ RN×N being a non-negative s-
sparse matrix and Ψ : RN×N → RT×N2

is a linear trajector-
let transform specified below. The final component E is the
residual noise which we assume to be normally distributed.

2.1. Trajectorlet transform

The trajectorlet transform Ψ : RN×N → RT×N2

is a linear
mapping that expresses possible trajectories a planet can take
in the N ×N frame according to the known angular velocity
and the point spread function (PSF) of the optical device.

The linear transform Ψ(·) is represented by a dictionary
of N2 elements in RT×N2

which we denote Ψi,j for ∀i, j ∈
[N ] × [N ]. A single item Ψi,j of the dictionary is generated
by placing the PSF of the optical device at the position i, j on



the first frame and rotating it according to the known angular
velocity of the telescope on the remaining frames; see Fig. 2
for an illustration. We normalize the elements of Ψi,j to pro-
duce a unit norm frame. The matrix-vector product and the
adjoint product are defined as

Ψ(P ) =

N,N∑
i,j=1

Ψi,j Pi,j Ψ∗(X) =

N,N∑
i,j=1

〈Ψi,j , X〉1i,j ,

(2)
where 〈·, ·〉 is the trace inner product and 1i,j ∈ RN×N de-
notes a canonical basis matrix with a single one at index i, j
and zero otherwise.

The underlying structure of the transform allows us to
compute the operations in (2) in an computationally efficient
way through the use of a rotation and a convolution opera-
tion. To compute the forward operation Ψ(P ), we apply the
convolution of P ∈ RN×N with the PSF of the planet as the
kernel and by placing the rotated copy of the result along the
T frames. The adjoint operation Ψ∗(X) can be computed
by reversing the operations: first, we derotate the rows of
X ∈ RT×N2

summing them into an N2 vector, we unfold it
into a N ×N matrix and perform the adjoint of the convolu-
tion with the PSF of the planet as the kernel. Detailed imple-
mentation using the scipy.sparse API [11] can be found
in the code provided with our paper1. Note that the rotation
and convolution procedure has also been used in MAYO [8].

2.2. Low-rank plus structured sparse model

We compute the best unbiased estimator for the model in (1)
by solving the following non-convex optimisation problem

min
L∈RT×N2 , P∈RN×N

1

2
‖X − (L+ Ψ(P ))‖2F ,

s.t. rank(L) ≤ r, ‖P‖0 ≤ s, Pi,j ≥ 0,

(3)

by applying a modification of the Normalized Alternating
Hard Thresholding (NAHT) algorithm [10], which is shown
in Algorithm 1. The method solves (3) by taking alternating
projected gradient steps. In line 5, NAHT computes an esti-
mate of the quasi-static background by projectingX−Ψ(P j)
on the set of rank-r matrices with HSVD

r (·) that performs the
randomized singular value decomposition and keeps only r
largest singular values of the input matrix [12]. Next, in line
6, it computes a gradient direction of the objective (3) in
respect to P based on the current residual map. The algo-
rithm estimates the adaptive step-size in line 7, where Rj

Ωj−1

denotes the matrix Rj with entries kept only on the support
set Ωj−1 and zeroes otherwise. The step-size corresponds
to the optimal gradient step-size when the current iterate P j

has the same support as the optimal sparse solution [13, 10].
Finally, in line 8, it estimates the current foreground element

1Link to the code https://github.com/hazandaglayan/
trajectorlets.

Algorithm 1 NAHT algorithm for (3)

Input: X ∈ RT×N2

and parameters r, s ∈ N
1: L0 = HSVD

r (X)

2: P̂ 0 = arg minP

∥∥L0 + Ψ(P )−X
∥∥2

F

3: P 0 = H`0
s

(
P̂ 0
)
, Ω0 = supp(P 0), j = 0

4: while not converged do
5: Lj+1 = HSVD

r

(
X −Ψ(P j)

)
6: Rj = −Ψ∗

(
X − Lj+1 −Ψ(P j)

)
7: αj =

∥∥∥Rj
Ωj

∥∥∥2

F

/∥∥∥Ψ
(
Rj

Ωj

)∥∥∥2

F

8: P j+1 = H`0
s

(
P j − αjR

j
)
, Ωj+1 = supp(P j+1)

9: j = j + 1
10: end while

H`0
s

(
P j − αjR

j
)

by projecting the gradient updated P j on
the sparse positive constraint using H`0

s (·) which keeps only
s largest positive entries while setting others to zero.

To provide the algorithm with an initial guess, we first
project the given data matrix X on the low-rank constraint as
L0 = HSVD

r (X). We then fit the least squares problem with
P̂ 0 = arg minP

∥∥L0 + Ψ(P )−X
∥∥2

F
with a least-squares

solver for sparse systems and project the result on the sparse
constraint as P 0 = H`0

s

(
P̂ 0
)

.

3. NUMERICAL EXPERIMENTS

We provide an experimental comparison of the proposed
LRPT method with two variants of the widely used AnnPCA
method, one based on the SNR detection map (AnnPCA-
SNR) [7] and the other one on likelihood ratio (AnnPCA-LR)
[2]. We compare the methods in terms of the visual quality of
the detection maps and the Receiver operating characteristic
(ROC) curves. The reproducible Python implementation is
publicly available1.

We perform the tests on the common benchmark of the
ADI cube VLT/NACO β-Pictoris in the infra-red L’ band
(3.8µm), with 612 frames covering 83◦ of parallactic angles
and λ/D ≈ 4.6 pixel [14]. In order to reduce the computa-
tion time, we subsample the cube to include only every third
frame, resulting in a cube of size 204× 100× 100.

To compare the methods, we set the rank in the methods
to be the best performing rank in case of the flux of 1.5σann,
relative to the standard deviation of the pixel intensities in
the annulus σann, which is equal to r = 10 for LRPT and
to r = 35 for AnnPCA. The sparsity parameter for LRPT is
chosen to be s = 10. In order to provide a fair comparison, we
implement an annular version of the LRPT method by solving
the optimisation problem (3) for different annular regions as is
also done in AnnPCA. Moreover, in AnnPCA we disable the
additional heuristic for parallactic angle threshold in the VIP
package [7]. Turning off the angle heuristic ensures that the
low-rank component is based on the same principle in both of

https://github.com/hazandaglayan/trajectorlets
https://github.com/hazandaglayan/trajectorlets
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Fig. 3: Plot of the detection map for each of the methods from a single experiment on the β-Pictoris dataset with an injected
planet at 3λ/D seperation for flux 1.5σann, with the correct location circled in white. The different color scales do not
necessarily affect the ROC curves, since the detection threshold is chosen relative to the highest observed value.

the methods which results in the same model for the quasi-
static field2.

Fig. 3 shows the visual quality of detection maps for the
methods on the β-Pictoris dataset for a synthetically injected
planet with the value of flux 1.5σann relative to the standard
deviation of the pixel intensities in the annulus σann. We
see that whereas the AnnPCA-SNR fails to produce a de-
tection map clearly identifying the exoplanet, AnnPCA-LR
and LRPT manage to produce meaningful guesses. Moreover,
LRPT produces a detection map based on a positive sparsity
criterion in (1) that could be further fine-tuned to detect a spe-
cific number of planets.

We compute the deterministic receiver operating charac-
teristic (ROC) curves using the methodology for counting the
true positive (TPR) and false positive (FPR) detections as in
[2], whose main advantage is that it is easily reproducible
and that for datasets without a planet any detection algorithm
would generate a diagonal line. To compute ROC curves, we
generate synthetic groundtruth examples with varying flux,
i.e., intensity of the planet, by injecting the planet-free data
cube (the data cube where the known planets have been re-
moved) with fake planets using the VIP HCI package [7]. Al-
though the injection of different levels of quasi-static noise is
not possible using the VIP HCI package, we change the signal
to noise ratio by controlling the intensity of the injected plan-
ets. Fig. 4 depicts the performance of the methods in terms
of deterministic ROC curves computed for values of flux rel-
ative to the standard deviation of the annulus c · σann, where
c = 0, 1, 1.5, 2. In order to lower the computational time we
crop the β-Pictoris dataset around the star resulting in a cube
of size 204×60×60. We observe that the LRPT method con-
sistently outperforms the AnnPCA-SNR for all tested values
of flux and AnnPCA-LR for flux c = 1.5.

2This is achieved by setting delta rot parameter to zero
and max frames lib parameter to the number of frames in the
vip hci.psfsub.pca local module.
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Fig. 4: ROC curves for β Pictoris data set. The planets are
injected in 3 λ/D separation with the fluxes indicated in the
legend multiplied by the standard deviation of the annulus. In
order to better observe the low FPR regime, we scale the axes
using the square root.

4. CONCLUSION & FUTURE WORK

We proposed a model-based method for exoplanet detection
that attempts to capture both the structure of the quasi-static
speckled field and the shape of the circular planet trajectories
can take in concurrence. This opens several avenues for fur-
ther research, for example, by imposing sparsity in different
domains to detect other celestial objects, such as circumstellar
discs [8, 6]. Finally, one could adapt this method to work on
images with multitude of spectral bands for which other geo-
metric transformations, such as radial dilation, are expected.
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