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Fig. 1: Sample video with corresponding audio from EPIC-KITCHENS-100 [1]. We compare the already published visual labels with
our collected EPIC-SOUNDS audio labels. We demonstrate the differences between the modality annotations, both in temporal extent and
class labels, highlighting: Misaligned intervals: temporal boundaries are distinct; Invisible action: action not seen in the video, but which
produces distinct sounds (0-to-1 matching); Indistinguishable sounds: sounds from two distinct visual actions, but are audibly inseparable;
Silent action: visual action that does not have audible sounds (1-to-0); and visual actions containing multiple repetitive sounds (1-to-N).

ABSTRACT

We introduce EPIC-SOUNDS, a large-scale dataset of audio
annotations capturing temporal extents and class labels within the
audio stream of the egocentric videos. We propose an annotation
pipeline where annotators temporally label distinguishable audio
segments and describe the action that could have caused this sound.
We identify actions that can be discriminated purely from audio,
through grouping these free-form descriptions of audio into classes.
For actions that involve objects colliding, we collect human anno-
tations of the materials of these objects (e.g. a glass object being
placed on a wooden surface), which we verify from visual labels,
discarding ambiguities. Overall, EPIC-SOUNDS includes 78.4k
categorised segments of audible events and actions, distributed
across 44 classes as well as 39.2k non-categorised segments. We
train and evaluate two state-of-the-art audio recognition models on
our dataset, highlighting the importance of audio-only labels and the
limitations of current models to recognise actions that sound.

Index Terms— audio recognition, action recognition, audio
event detection, audio dataset, data collection, dataset

1. INTRODUCTION

Humans perceive objects and actions through multiple senses, espe-
cially vision and audition [2]. Inspired by this, a plethora of works
aim to solve various video understanding tasks, such as action recog-
nition [3, 4, 5] and detection [6, 7], by fusing the two modalities.
These attempts are especially common for egocentric video datasets
due to the camera’s close proximity to the ongoing actions resulting

∗Equal technical contribution. †Now at Samsung AI Center Cambridge.

in clearer inputs, both visually and audibly. Research has shown im-
proved performance by using audio and video jointly in egocentric
data [8, 9, 10, 11].

In general, these works make two key incorrect assumptions:
First, that the visual and auditory events temporally coincide; Sec-
ond, that a single set of classes can be used for both modalities, typi-
cally derived from vision. In practice, visual and auditory events ex-
hibit varied levels of both temporal and semantic congruence, thus
violating these assumptions (See Figure 1). In the case of actions
such as ‘close bin’, the onset of the visual event can be defined as the
time that the person grasps the handle, whereas the onset of the audio
event is delayed to the moment when the lid of the bin slams. Some
actions are audibly indistinguishable, e.g. ‘wash carrot’ vs ‘wash
tomato’, as it is impossible to determine which vegetable is being
washed through sound alone. Consequently, using the visual tempo-
ral labels as targets for training an audio classifier is often a flawed
endeavour – the resulting audio classifier will not be able to dis-
criminate all of the visual events; and many audio labels that could
provide supervision for training are missed. Based on these observa-
tions, we crowdsource temporal and semantic labels for the audio of
EPIC-KITCHENS-100 that are distinct from the visual ones.

However, as evidence suggests [12], humans perform poorly at
recognising objects and events using audio alone, making their anno-
tation using only audio challenging. Due to the lack of sufficient in-
formation in audio for inferring fine-grained properties of events, hu-
mans tend to use vague terms for describing them; e.g. when the in-
teraction from the collision of two objects is indistinguishable from
audio, annotators often describe the associated event as ‘clang’ or
‘bang’. To alleviate this, we further augment these semantics with
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Table 1: Comparison to existing datasets. A: Audio. V: Video.
T: Temporal annotations. We showcase that EPIC-SOUNDS is the
only dataset with distinct classes for audio and video modalities (D).
We only report categorised segments of EPIC-SOUNDS here.

Name Source # hrs # seg. # cls Modality T D

DESED [13] real + synth. 43h 8k 10 A 3 N/A
URBAN-SED [14] synth. 30h 50k 10 A 3 N/A
TUT 2016 [15] real 2h 6.3k 18 A 3 N/A
AudioSet [16] YouTube 5833h 1.8M 632 A + V 7 7
VGG-Sound [17] YouTube 550h 200k 309 A + V 7 7
SSW60 [18] real 25.7h 9.2k 60 A + V 7 7
LLP [19] YouTube 33h 19.4k 25 A + V 3 7

EPIC-SOUNDS home kitchens 100h 78.4k 44 A + V 3 3

the materials of the objects that interact. We verify these from the
video, discarding incorrect audio-only material annotations.

In summary, we introduce EPIC-SOUNDS, a large-scale dataset
of daily-life sounds, derived from the audio of EPIC-KITCHENS-
100. EPIC-SOUNDS contains 78,366 categorised sound events
spanning over 44 categories, as well as 39,187 non-categorised
sound events, totalling 117,553 sound events across 100 hours of
footage collected in 700 videos from 45 home kitchens. The sound
classes are based on descriptions from only listening to audio, thus
suitable for problems in acoustics such as audio/sound recogni-
tion and sound event detection. EPIC-SOUNDS is available from:
https://epic-kitchens.github.io/epic-sounds.

2. RELATED WORK
Sound event detection datasets. Sound Event Detection (SED)
is the task of detecting the onset and offset of audio events as
well as recognising the event within the detected boundaries. SED
datasets [13, 14, 15] are similar to EPIC-SOUNDS as these in-
clude annotations of temporal boundaries of events, whereas sound
recognition datasets [20, 21, 22] do not. Nevertheless, they dif-
fer from EPIC-SOUNDS in several aspects. First, they are of
smaller scale making the training of modern architectures imprac-
tical. Second, [13] and [14] contain synthetic audio, and therefore
models trained on these datasets generalise poorly to real recordings.
Third, [13, 14, 15] contain sounds associated with generic scenes
and events, whereas EPIC-SOUNDS focuses on fine-grained sounds
generated from diverse audible events in 45 home kitchens.
Audio-visual datasets. We compare EPIC-SOUNDS to publicly
available sound recognition or detection datasets in Table 1. Au-
dioSet [16] is the largest audio-visual dataset of audio events with
2.1M clips and 527 annotated classes, while VGG-Sound [17] con-
tains over 200K video clips and 300 audio classes. They are both
collected from YouTube and each audio clip is 10s long. Both do
not have temporal annotations for events, and importantly, a sin-
gle set of annotations is collected for both modalities. The LLP
dataset [19] is the closest to ours, in that both visual and auditory
events are annotated independently, providing separate temporal seg-
ments. However, unlike ours, both modalities still share the same
label set. Also, LLP is of smaller scale and contains diverse events
while EPIC-SOUNDS focuses on sounds resulting from actions.
Fine-grained audio-visual datasets. The PACS dataset [23] fo-
cuses on understanding the physical common sense attributes of
objects shown in the video, which is similar to our ‘material’ based
annotation procedure. However, these attributes are distinguished
by 13.4K question-answer pairs; displaying the video with and
without audio, and then querying a variety of physical properties.
SSW60 [18] consists of 31K images, 3.8K audio and 5.4K videos of
60 species of birds, proposed to facilitate works on fine-grained cat-
egorization using audio-visual fusion. Both datasets do not contain
temporal annotations of sounds.

Fig. 2: Left: The percentage distribution of each audio class across
the EPIC-SOUNDS dataset splits. Right: Class frequencies show-
casing the long-tail distribution. C: represents a collision-based
sound between objects of the same or two distinct material types.

3. EPIC-SOUNDS: DATASET STATISTICS

EPIC-KITCHENS-100. EPIC-KITCHENS-100 [1] is a large-scale
egocentric audio-visual dataset which contains 100 hours of videos
containing unscripted daily activities and object interactions in peo-
ple’s kitchens. It consists of 700 videos and 89,977 segments de-
scribing visual actions that occur. Actions consist of verb and noun
labels, where there are 97 verb classes and 300 noun classes. The
average action length is 2.6s. Since these actions are based only on
video, we emphasise that we do not refer to any of these labels dur-
ing the annotation process.
EPIC-SOUNDS. The dataset consists of 78,366 categorised tempo-
ral annotations with an average length of 4.9s, distributed across 44
classes. We match the train / val / test splits from EPIC-KITCHENS-
100, giving the per-class proportion across splits in Fig. 2 (left). We
divide the test split into two roughly even subsets: one for audio-
based interaction recognition, and one for audio-based interaction
detection. We release start/end times for the recognition subset, and
keep those for the detection hidden for the relevant challenge.

Class frequency is also shown in Figure 2 (right), highlighting
that EPIC-SOUNDS is naturally long-tailed. We also visualise the
waveforms for a sampled subset of the classes. Here, there are both
classes which produce waveforms consistent with short-term, per-
cussive sounds such as all the collision-based classes, as well as
long-term sounds e.g. sizzling. We also visualise the length of the
annotations distributed across the classes in Figure 3. Here, we sort
the classes by the median of their lengths, t̃, and distinguish three
categories: long-term (t̃ ≥ 10s); intermediate (1s < t̃ < 10s); and
short-term (t̃ ≤ 1s) classes. Long-term classes relate to lengthier ac-
tivities, such as cooking and hoovering. In the intermediate classes,
there are sounds such as scrub / scrape, or rustle, and then near in-
stantaneous/percussive sounds in the short-term category, including
all collision-based classes.

4. DATA COLLECTION PIPELINE

The data collection process is conducted through the collection of
temporal segments of distinct sounds, described by free-form vocab-
ulary, followed by clustering generic sound categories into distinct
classes. This section details this process, as well as post-processing
steps taken to refine the results.

4.1. Data collection of labelled temporal segments

The objective is to annotate all the distinctive audio events that occur
across all the videos in EPIC-KITCHENS-100. The annotation con-
sists of the temporal interval of the event, together with a free-form
text description. As the video length in this dataset varies greatly,

https://epic-kitchens.github.io/epic-sounds


Fig. 3: Box plot for the lengths of the annotations over classes, or-
dered by the median of their lengths. The majority of the classes, 30
(68%) are short-term, 11 (25%) are intermediate classes and only 3
(7%) are considered long-term (median > 10s). C: collision-based
sounds between objects of the same or two distinct material types.

from 30 seconds to 1.5 hours, we trim the videos into a series of
manageable lengths for annotations of 3-4 minutes. We deem our
decision to only provide the audio stream as a key step so the annota-
tors focus on the temporal bounds of the acoustic event alone, rather
than being biased by visual and contextual information present in the
video stream (consider the ‘misaligned intervals’ example shown in
Figure 1, where visual and auditory temporal segments do not align
for the same event). However, the annotators are provided with the
plotted audio waveform to act as a visual guide to assist in targeting
specific audio signatures and streamline the annotation process.

Instructions to the annotators. We worked with 20 annotators
hired from an annotation company. We use a customised version
of the VIA tool [24] to gather the annotations. Annotators are asked
to listen to the audio and detect any distinctive audio event. They
then are instructed to mark the start and end time of each distinc-
tive sound they hear. Each segment is then given a semantic label
which best describes the annotator’s perception of the action associ-
ated with the audio event. We impose no restriction on the vocab-
ulary used, so the annotators may describe this however they wish.
As a guide, we provide a list of sound labels that commonly occur
in daily life, which the annotator may refer to, though they are not
required to explicitly choose from this list. We term a segment-label
pair as an ‘audio annotation’. A second annotator performs quality
assessment to the audio annotations produced by the first annotator,
particularly focusing on any missed audio events.

For each unique label description, the VIA tool creates a sep-
arate time-line, effectively grouping sequences of the same event.
Note that sound events can overlap in time. If two segments are less
than 0.3s apart, we instruct the annotators to merge the two segments
as we deem them to belong to the same event. Additionally, anno-
tators are asked to identify consistent background sounds (or noise)
that occur throughout a large portion of the audio (e.g. radio, fan or
washing machine). The annotators were asked to tag these as ‘back-
ground’. The procedure described thus far resulted in the annotation
of 556 distinct sound descriptions.

Humans tend to use abstract words to describe sounds, such as
‘clang’ or ‘clatter’, especially for those generated from the collisions
between objects. To address this, we use a customised LISA [25]

Table 2: Material options for collision sounds. We note # of time
each material was selected in collision sounds, and discard the
sounds annotated with ‘Others’ or ‘Can’t tell’.

Material Example objects # of times selected

Metal metal or stainless steel 15523
Plastic plastic bowl, plastic container 5464
Ceramic ceramic cup, plate 2634
Wood wooden spatula, wooden table 2408
Paper kitchen roll, cardboard boxes 1253
Glass wine glasses, glass cup 1248
Stone / Marble kitchen worktops, marble tables 377
Cloth towels, teatowels, clothes 257
Others materials not listed above (e.g. food) 3596
Can’t tell cannot determine the material 10030

annotation interface for annotating the material of the objects that
collide based on audio. We instruct annotators to select from a pre-
specified list which materials are involved in the collision. This list,
along with examples of objects for each material, are provided in
Table 2. These cover all the materials popular in kitchens. Anno-
tators are encouraged to select one or more materials, or mark the
material as indistinguishable by choosing the ‘Can’t tell’ option. We
drop the instances in the latter case – as we believe these are unhelp-
ful for sound or event understanding tasks. However, some material
sounds might be deceiving. For example, one might perceive the
material collision to be between a glass and a wooden object, but in
fact it’s food poured into a ceramic container. We thus ask annota-
tors to then visually verify their material annotations using the cor-
responding video. Importantly, annotators have to listen and choose
the perceived material first, and cannot change these after watching
the video. Instead, they select the actual materials involved when
viewing the video. We only retain visually-verified collision sounds
– i.e. materials correctly perceived from the audio only, then verified
from the visual observation. We choose all collision material labels
for which at least 40 examples are present. As a result, abstract la-
bels related to collision (e.g. ‘clang/clatter’, ‘put objects on surface’)
are clustered into 24 sound categories describing the materials in-
volved, such as C: metal-only, or C: plastic-wood. We use the letter
C to indicate these are collision-based classes.

4.2. Post-processing Annotations

From labels to classes. We post-process the audio labels to fix
spelling errors and group semantic equivalences. For example,
sounds like ‘buzzer’, ‘beep’ and ‘alarm’ are grouped into one beep
class. Similarly, sounds described by the verbs ‘wipe’, ‘scour’,
‘scrape’ and ‘scrub’ are also grouped into a single class. We also
manually review tail instances to determine whether these form
novel classes or should be merged with others. In cases where
the description was not meaningful, the categorised annotation is
dropped. For example, the sound ‘spray’ was considered a mean-
ingful tail instance of an action that sounds. In contrast, the label
‘dog barking’ was discarded as it is not relevant to our context. This
produces the 44 audio classes, as shown in Figure 2.
Error checking audio classes. Due to differences in sound percep-
tion between annotators, some errors exist amongst the classes. For
example, where one annotator hears a drawer being pulled and hence
labels ‘open / close’, another may hear ‘drag object’ for a similar au-
dio. To resolve such errors, we manually review each of the labels
in the test and validation set. Specifically, the following procedures
are conducted to correct samples in the validation and test set. (1)
We ask annotators to manually review all the val / test samples, pro-
viding them only sounds for non-collision classes and sounds and
corresponding video clips for collision classes. (2) We collect the



Table 3: Results of the Baseline Models on the EPIC-SOUNDS
validation, recognition test and entire test splits. L: Linear-Probe;
F: Fine-Tuning.

Split Model Top-1 Top-5 mCA mAP mAUC

Va
l

Chance - 7.71 30.95 2.29 0.023 0.500
SSAST [26] L 28.74 64.87 7.14 0.079 0.755

ASF [27] L 45.53 79.33 13.48 0.172 0.789
SSAST [26] F 53.47 84.56 20.22 0.235 0.879

ASF [27] F 53.75 84.54 20.11 0.254 0.873

R
ec

og
ni

tio
n

Te
st

Chance - 7.85 31.91 2.39 0.024 0.500
SSAST [26] L 29.93 66.60 7.17 0.082 0.725

ASF [27] L 45.00 78.98 15.00 0.183 0.788
SSAST [26] F 53.71 84.54 22.28 0.223 0.820

ASF [27] F 54.45 85.17 20.41 0.254 0.852

E
nt

ir
e

Te
st

Chance - 7.22 30.11 2.27 0.023 0.500
SSAST [26] L 27.50 65.55 6.68 0.080 0.741

ASF [27] L 44.55 78.44 14.49 0.145 0.772
SSAST [26] F 53.75 83.76 20.76 0.237 0.860

ASF [27] F 54.86 84.26 20.30 0.232 0.823

samples in which the first and second annotations are inconsistent,
and ask a new set of annotators to manually choose whether the 1st
or 2nd annotations are correct. The annotators could choose ‘can’t
tell’ or ‘neither of the two’. (3) We manually verify those decisions,
and removed the samples from the val/test sets. For the training set,
we utilise the overlaps between audio segments and visual segments
to select the samples for reviewing. We deem the use of the visual
labels acceptable for error correction, as the annotation process is
complete. Thus, utilising the visual labels for post-processing no
longer compromises the issues stated in Figure 1.

We review all audio classes for which there exists a mapping to
visual classes in EPIC-KITCHENS-100. We identify two types of
mapping, trivial; the audio class itself already exists as a visual class
e.g. ‘scrub’, and relational; the audio class does not exist as a visual
class itself but can be semantically mapped to one or more of the vi-
sual classes, such as the audio class ‘click’ relating to the verb ‘turn
on/off’ or the noun ‘light switch’. We consider all annotations not
labelled as the audio class of interest, but which overlap with action
clips containing its visual mappings. We then manually assess each
overlapping annotation, through listening to the audio and determin-
ing the label’s correctness. We run this error checking cycle multiple
times to ensure all incorrectly classified instances are accounted for.
Non-categorised audio events. As a result of post-processing, there
are audio events that we recognise the sound exists but no semantic
label matching the 44 classes could be given. These are samples
we either could not assign class labels, or collision sounds for which
they could not be visually verified. We release these temporal bound-
aries of these 39,187 samples as non-categorised.

5. EXPERIMENTS AND RESULTS

This section describes how two state-of-the-art sound recognition
models perform on classifying EPIC-SOUNDS. We assess models
through performance metrics and class confusion matrices.
Baselines. We train and evaluate the Auditory SlowFast (ASF) [27]
and Self-Supervised Audio Spectrogram Transformer (SSAST) [26]
audio encoder networks, with both a linear probe, i.e. by freezing
the model weights and only training the last classification layer, and
by fine-tuning. We also compare to a chance baseline. ASF is pre-
trained on VGG-Sound, and SSAST is pretrained on AudioSet and
LibriSpeech [28].

Fig. 4: Confusion Matrices on Val for ASF (left) and SSAST (right).

Audio processing. We follow the audio processing of [27] for ex-
tracting the input spectrograms for both models, noting that this out-
performed the default audio processing of SSAST (200× 128 spec-
trograms for 2s of audio, or 400 × 128 for 4s of audio sampled at
16kHz). Namely, audio is resampled at 24kHz for both models. We
randomly sample 2s of audio to create log-mel-spectrograms with
128 Mel bands. If the audio annotation is shorter than 2s we pad the
produced spectrogram with its last column. We use a window and
hop size of 10ms and 5ms respectively, resulting to a spectrogram of
size 400× 128.
Training & Validation Configuration. We train both models for
30 epochs, setting the initial learning rate to 1e−3 for ASF which
decays to 10% on epoch 25 and 1e−4 for SSAST, which is warmed
up from 1e−6 for 2 epochs and decays to 5% then 1% on epochs
10 and 20. Both models are trained with cross-entropy loss, opti-
mising ASF using SGD with Nesterov momentum equal to 0.9, and
SSAST using AdamW with (β1, β2) = (0.9, 0.999). Both models
use a weight decay of 0.0001 and a batch size of 128. We use a base
384×384 ViT with patch size 16 as the backbone for SSAST and the
8 × 8 ResNet50 variant of ASF. For data augmentation, SpecAug-
ment [29] is used, again following [27], using two frequency masks
with F = 27, two time masks with T = 25 and time warp with
W = 5. We use test augmentations simliar to [27], dividing the
audio into 5 equally sized sub-clips and then averaging their individ-
ual predictions from the networks. For the linear probe results, we
freeze the backbone of both SSAST and ASF and train only the last
linear layer with the same training hyperparmeters and pretrained
backbones as before.
Evaluation Metrics. We report the top-1 and top-5 accuracy, as
well as mean average precision (mAP), mean area under ROC curve
(mAUC), and mean per class accuracy (mCA), for both the valida-
tion and test sets.
Results. We report quantitative results for both models in Table 3.
Overall, ASF outperforms SSAST by 0.28%, 0.74% and 1.11% for
top-1 accuracy on the validation, recognition test and entire test set
respectively. ASF exhibits better mAP for the validation set and
recognition test set, whereas SSAST performs better on the entire
test set, suggesting these models share a similar level of robustness to
the long-tailed data. The performance of the linear probe drops sig-
nificantly compared to fine-tuning results for ASF and almost halves
for SSAST. In the latter case, we note that self-supervision alone
does not learn class-discriminative features.

Figure 4 shows the validation confusion matrices for finetuned
ASF and SSAST. We see that both models are able to detect a subset
of distinctive, unique sounds such as rustle, water and beep. Con-
cerning the collision-based classes, both models tend to classify uni-
material collisions more successfully than bi-material collisions, but
generally produce a false positive prediction of the metal-only col-
lision class, suggesting that the models may struggle to detect how



material properties alter the sound produced from a collision.
Reflections. When comparing audio to video labels, we reflect on
our motivation in Figure 1. The top-3 audio classes that have 1-to-
0 overlap with visual classes are: wood / glass collision (51.78%),
metal / marble collision (51.67%), glass / marble collision (51.39%).
In this instance, the classes relate to sounds produced by visual ac-
tions such as placing objects which are occasionally deemed trivial,
or happen off-screen, resulting in missed visual annotations while
still producing distinctive auditory signals. The top-3 video classes
that have no overlap with audio (0-to-1) are: take basket (71.43%),
pour basil (71.43%) and brush oil (70.0%) – these are silent actions.
The top-3 many-to-1 classes that contain repeated audio sounds (on
average) are: cut / chop (1.77-to-1), beep (1.31-to-1), metal-only
collision (1.18-to-1), these relate to actions that have a ‘stop-start’
pattern e.g. pauses between chops, button presses on an appliance,
or between repetitively moving items in a cutlery draw or sink.

6. CONCLUSION

In this paper, we present a large-scale dataset, EPIC-SOUNDS,
which consists of 78.4k categorised segments and 39.2k non-
categorised segments, totalling 117.6k segments spanning 100 hours
of audio, capturing diverse actions that sound in home kitchens.
Sound categories are annotated based on audio human descriptions.
We also provide benchmark classification performance using the
state-of-the-art sound recognition networks. The audio annotations
in this dataset enable a veridical evaluation of audio classifiers, and
can replace the current evaluations based on visual annotations. We
anticipate that multi-modal approaches will benefit from these au-
dio labels. The dataset can also be used for audio event detection,
though we have not evaluated that in this work. The dataset and
baseline code will be made publicly available.
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