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ABSTRACT

Temporal sentence grounding (TSG) aims to localize the tem-
poral segment which is semantically aligned with a natural
language query in an untrimmed video. Most existing meth-
ods extract frame-grained features or object-grained features
by 3D ConvNet or detection network under a conventional
TSG framework, failing to capture the subtle differences be-
tween frames or to model the spatio-temporal behavior of core
persons/objects. In this paper, we introduce a new perspective
to address the TSG task by tracking pivotal objects and ac-
tivities to learn more fine-grained spatio-temporal behaviors.
Specifically, we propose a novel Temporal Sentence Tracking
Network (TSTNet), which contains (A) a Cross-modal Tar-
gets Generator to generate multi-modal templates and search
space, filtering objects and activities, and (B) a Temporal Sen-
tence Tracker to track multi-modal targets for modeling the
targets’ behavior and to predict query-related segment. Exten-
sive experiments and comparisons with state-of-the-arts are
conducted on challenging benchmarks: Charades-STA and
TACoS. And our TSTNet achieves the leading performance
with a considerable real-time speed.

Index Terms— TSG, tracking, cross-modal, attention

1. INTRODUCTION

Temporal sentence grounding (TSG) [, 2, 3] is an important
yet challenging task in multi-modal deep learning due to its
complexity of multi-modal interactions and complicated con-
text information. As shown in Fig. 1(a), given an untrimmed
video, it aims to determine the segment boundaries including
start and end timestamps that contain the interested activity
according to a given sentence description.

Most previous works [1, 2, 4, 5, 6, 7, 8] first encode
and interact the pair of video-query input, and then employ
either a proposal-based or a proposal-free grounding head
to predict the target segments. However, these methods ex-
tract frame-level video features by a pre-trained 3D ConvNet,
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(b) An illustration of tracking objects and activities for TSG .

Fig. 1. Illustrations of (a) TSG and (b) tracking-view TSG.

which may capture the redundant background appearance in
each frame and fails to perceive the subtle differences among
video frames with high similarity. Recently, a few detection-
based approaches [9, 10, 11] have been proposed to capture
fine-grained object appearance features inside each frame for
focusing more on the foreground contexts. Although they
achieve promising results, these methods directly correlate
all spatial-temporal objects in the entire video through a
simple graph- or co-attention mechanism, lacking sufficient
reasoning on the most query-specific objects.

To learn more specific spatial-temporal relations among
the extracted objects, as shown in Fig. 1(b), we adapt the
object tracking perspective into the TSG task to correlate the
most query-related objects for activity modeling. Firstly, we
generate the multi-modal target templates by selecting core
objects and activities (such as “man”, ”diving broad” and
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Fig. 2. The overall architecture of our proposed TSTNet. We first encode the video and query to obtain Visual features V¢, V¢

and Query features Q', Q9.

Then we develop a Cross-modal Targets Generator to generate and filter original Templates

(T2, T, T?) and Search space (S°,S*, S*) for latter object/activity/semantics tracking. The Temporal Sentence Tracker is
designed for tracking the query-related target corresponding with sentence semantics and predicting the target segment.

”jumps”) and discarding irrelevant ones (black boxes in the
video). By aggregating words feature with object-grained
visual features, we track the corresponding template in each
frame and model the target behavior with continuous target
templates. With specific semantics, we deploy a moment
localizer to determine the most query-related segment.

However, directly adopting the standard tracking algo-
rithm for TSG will raise two major problems: (1) Modal gap:
there is a modal gap between vision and language in TSG
while utilizing typical tracking algorithm. (2) Ambiguous
target: there is no specific target provided as supervision in
TSG, while standard tracking specifies an object to track. To
overcome these two challenges, we develop a novel Temporal
Sentence Tracking Network (TSTNet), which contains a Fea-
ture Encoder, a Cross-modal Targets Generator and a Tem-
poral Sentence Tracker (Fig. 2). Specifically, we first extract
the object-grained features and query features by pre-trained
detection model, action recognition 3D ConvNet, Glove [12],
Skip-thought [13]. Then, we leverage self and co-attention to
establish associations among objects, activities and words for
bridging the modal gap and generating search space and tem-
plates. And we utilize instance filters to further screening the
core targets. A dynamic template updater in temporal sen-
tence tracker is to match and dynamically update templates
for each frame in search space, modeling the behavior of tar-
gets. Finally, we employ a moment localizer to determine the
temporal segment and fine-tune the boundaries of it.

Our contributions are summarized as follows:

(1) We provide a new perspective of tracking objects and
activities to address the TSG problem, which can focus more
on behavior modeling of core targets;

(2) We propose a novel framework TSTNet, which tackles
the differences between TSG and standard tracking;

(3) We demonstrate the predominant effectiveness and ef-
ficiency of our TSTNet by evaluating on two benchmarks:
Charades-STA and TACoS.

2. METHODOLOGY

Given an untrimmed video V and a natural language sentence
query Q, the TSG aims at predicting a video segment from
time 7, to 7, corresponding to the same semantic as Q.

2.1. Feature Encoder

Video Encoder. In order to model both objects and activities,
we extract the appearance-aware and motion-aware features
of original videos by the pre-trained Faster R-CNN [14] and
C3D/13D [15] networks.

Specifically, for objects, we first uniformly sample fixed
M frames from video V), and then extract K objects from
each frame using Faster R-CNN with a ResNet-50 FPN
backbone. Therefore, we represent the object features as

° = {oimbi,j}ii\ﬁfff(, where 0; ; € RP° denotes object

features with dimension D,, and b; ; € R* represents the
bounding-box coordinate of the j-th object in ¢-th frame.

Since the spatial relationship of instances plays a impor-
tant role in object behavior modeling, we fuse the spatial in-
formation b; ; with object features o, ; by concat function and
Fully Connection (FC), obtaining V° = {v? j}z iVIJj:lK

For activity features, we put every 8 frames to a pre-
trained 3D ConvNet with stride 4, and sample M output
sequence by linear interpolation, which is represented as
Ve = {v¢}'=1, where v¢ € RP.
Query Encoder. For word-level encoding, following previ-
ous works [16, 17], we embed each word in sentence query
Q by Glove [12], obtalnmg the local semantic of every single
word: Q! = {ql}Z o » where g; € RP. To extract the se-
mantic of the whole sentence, the Skip-thought parser [13] is
employed to capture the global semantic of the whole query,
denoted as Q9 € RP.

2.2. Cross-modal Targets Generator

To solve the problem of inconsistency of modality and am-
biguous targets to retrieved, we developed a Cross-modal Tar-



gets Generator (CTG).

Specifically, we design Search Space Representation

(SSR) and Template Generation (TG) across sentences and
videos for further cross-modal tracking. As for redundant
targets, we develop instance Filters for screening the core
semantic-related targets.
Search Space Representation. First, we utilize sentence
query guidance to represent video search space for retrieval.
Because there exist interactions between objects inside each
frame, we first learn the self- and inter-correlation between K
objects with attention mechanism [18]:

VO
/D b)

where W1, W5 are two learnable matrices, o is an activate

function. Next, we associate words with objects in each frame

by leveraging query-guide attention to highlight the word-
relevant objects while weakening the irrelevant ones:

VO =o(VWL (VW) T) (1)

_ L (o T
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where W5, Wy, W5 are the transform matrices, w? € REXN
represents the correlation between each word-object pair.
Since too many pre-extracted objects will interfere with
tracking and modeling the key targets, we are supposed to
filter out redundant backgrounds or instances, and accurately
select core objects/activities for tracking. Therefore, we de-
ploy k adaptive Object Filters to select k£ core object search
space from K object features. In detail, we implement the
filter with a linear layer, followed by a Leaky ReLU func-
tion and a 1d-maxpool layer to activate and filter targets. At
last, we obtain k object search space S° = {;S°}=F, where
+5° € RM*D represents the i-th search space for tracking.

For the activity search space representation, similarly,
we gain the query-guide activity features V" by replacing
Ve with V@ in Eq. (2). Then a linear layer followed by
a Leaky ReL.U function is employed to generate the search
space S§¢ ¢ RM*D,

Considering object or activity alone is not enough to
model the semantics and relationships between them. There-
fore, we learn the semantic features V'* with activity features
V* and object features V' by Eq. (2), and then calculate
element-wise multiplication with Q9 to get semantic search
space §° € RM*D
Template Generation. After getting the search space of the
video, we need to determine an initial template as the target
for matching and tracking. In this case, we consider deem-
ing the sentence query Q', Q7 as initial matching template
by combining it with instances in videos V', V¢,

In details, we first calculate the cosine similarity between
each word and object at each frame, and obtain the object-

aware query feature by equation:
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where w; ; ; is the similarity between i-th word and j-th ob-
ject at frame t¢.

Then, we pick k original object templates T = {;T¢}i=F
€ RF*D from @" via k object filters, which corresponds to k
search spaces S°.

For activity template generation, similarly, we obtain an
activity-aware enhanced query feature Q¢ € RN*MxD py
Eq. (3) and filter an activity original template T¢ € R*P.

The semantic original template T € R'*P is generated
from QY and V° by Eq. (3) followed by a semantic filter.

2.3. Temporal Sentence Tracker

In order to model the targets’ behavior for text-visual align-
ment, we develop a Dynamic Template Updater (DTU) to
track targets in the search space with original templates and
then deploy a Moment Localizer to localize the most query-
related moment in videos.

Dynamic Template Updater. For any search space and tem-
plate tuple (S, T), we fuse the original template T, and the
(i — 1)-th template T;_; as a new template for aligning the
i-th search frame S;, as is shown in Fig. 2 (right). We utilize
a template updater ¢ to update the templates and then con-
catenate all templates by sequence, formulated as:

Ti - (¢(T077—Zi—1) + TO) : Si7

“)
FT = [T1>T27 "'7T]\1]7

where ¢(-) is the Feedforward Neural Network (FNN) fol-
lowed by a GRU [19] unit. Fr contains the behavior infor-
mation composed of continuous templates. In practice, we
feed different tuples of search space and template into dif-
ferent template updaters, and obtain F2 € R¥*MxD Fa ¢
RM*D Fs e RM*D | Then we concatenate them followed
by a FC layer and get 1?'T:

Noting that reversed trace of the target also provides rich
behavior information, we track the target from theAlast search
frame as Eq. (4) and obtain the reversed features Fr.. At last,
we concatenate the forward ﬁT and the reversed ﬁ} as ﬁT.
Moment Localizer. As many temporal localizers are plug-
and-play, we follow the previous work [16] to predict the tar-
get moment for fair comparison.

3. EXPERIMENTS

Datasets. Charades-STA dataset was built on Charades by
[1], including 9,848 videos of indoor scenarios. By conven-
tion, we use 12,408 and 3,720 video-sentence pairs for train-
ing and testing. TACoS is collected from the MPII Cook-



Charades-STA

R@1, 10U =

Methods Feature 0.3 05 0.7 mloU

CBP C3D T 3680 1887 | 3574
ODTAN | VGG - 3981 2331 | -

VSLNet BD | 7046 5419 3522 | 50.02

LGI BD | 7296 59.46 3548 | 51.38

CPN BD | 7553 5977 3667 | 53.14
TA-Net 13D - 6129 3791 | -

DRFT | I3D+F4D | 76.68 63.03 40.15 | 54.89
MARN | 13D+Obj | - 6643 4480 | -

C3D+0bj | 7626 6534 4361 | 56.76

TSTNet | 13psob | 77.62 6749 4521 | 57.82

Table 1. Comparison with SOTAs on Charades-STA.

TACoS
R@1,IoU =

Methods Feature 03 05 07 mloU
CMIN C3D 24.64 18.05 - -
CBP C3D 2731 2479 19.10 | 21.59
2DTAN C3D 3729 2532 - -
VSLNet 13D 29.61 2427 20.03 | 24.11
IA-Net 13D 37.91 26.27 - -
CPN 13D 48.29  36.58 21.25 | 34.63
MARN I13D+O0bj 4847  37.25 - -

C3D+0bj | 50.21 3847 23.12 | 3526
TSTNet I3D+O0bj 53.39 41.23 26.62 | 37.83

Table 2. Comparison with SOTAs on TACoS.

ing [20], which contains 127 long videos of cooking scenar-
ios. Following [1], we obtain 10,146, 4,589 and 4,083 clip-
sentence pairs as training ,validation and testing dataset.
Evaluation Metrics. We adopt "R@n, loU=4" and "mloU”
metrics for evaluation. The "R@n, IoU=u" denotes the per-
centage of at least one of top-n predictions having IoU larger
than p. "mloU” represents the mean average IoU.
Implementation Details. For object feature extraction, we
utilize Faster R-CNN [14] with a ResNet-50 FPN [21] back-
bone to obtain object features. The number K of extracted
objects is set to 15 and the number k of object filter is set to
5. The length of frame sequences M in our model is 64, 200
for Charades-STA and TACoS. For query encoding, we utilize
GloVe 840B 300d [ 2] to embed each word as word features.
For model setting, the activate function o is Sigmoid. The
hidden dimension D is 512. We sample 800 segment propos-
als for TACoS and 384 for Charades-STA similar to [16]. We
train our model by an Adam optimizer with the learning rate
of 0.0008 for 60 epoches. Batch size is 64.

3.1. Experimental Results and Analysis

We compare the proposed TSTNet with the following state-
of-the-arts: (1) Proposal-based methods: CBP [22], 2DTAN
[23], CMIN [16], IA-Net [17]; (2) Proposal-free methods:
VSLNet [24], LGI [25] , CPN [26]; (3) Multi-stream meth-
ods: DRFT [27], MARN [9]. The best results are in bold and

Methods | TGN 2DTAN CMIN TSTNet
V-QPS 2.23 3.89 86.29  103.27
Parameters | 166 363 78 67
Accuracy | 18.89  25.32 18.05 41.23

Table 3. Effyciency comparision in terms of video-query
pairs per second (V-QPS), Parameters (Mb) and Accuracy
(R@1, IoU=0.5 metric) on TACoS dataset.

R@1,IoU =

Components Changes 03 05 0.7
Cross-modal w/o SSR 72.59  62.21 39.79
Target w/o TG 7425 63.82  41.59
Generator w/o Filter | 73.12  62.74  40.27
Temporal w/oDTU | 70.12 60.49 38.84
Sentence w/oGRU | 7231 6192 39.65
Tracker wlo Fy | 73.61  62.64 4035
Full 77.62 6749 45.21

Table 4. Ablation study on Charades-STA dataset.

the second bests are in italic.

Quantitative Comparion. As summarized in Table 1 and
2, our proposed TSTNet surpasses all existing methods on
two datasets. Observe that the performance improvements of
TSTNet are more significant under more strict metrics (R@1,
IoU=0.7), indicating that TSTNet can predict more precise
moment boundaries of untrimmed videos. As multi-stream
methods, DRFT integrates the three modalities of visual in-
formation RGB (I3D), optical flow (F) and depth maps (D),
and MARN fuses activity (I3D) with object (Obj). They per-
form well and imply that combining multi-dimension sources
helps the model learn more accurate semantics. Differing
from DRFT and MARN, our TSTNet traces objects from a
finer granularity and mines more explicit behavior of core tar-
gets, thus outperforming better in results.

Efficiency Comparison. We compare the inference speed
and effectiveness of our TSTNet with previous methods on
a single Nvidia Quadro RTX5000 GPU on TACoS dataset.
Table 3 shows that TSTNet achieves a significantly faster in-
ference speed and a lightweight model size.

Ablation Study. As shown in Table 4, we verify the contribu-
tion of several modules in our TSTNet: we remove SSR, TG,
Filter in Cross-glodal Target Generator, and DTU, GRU, re-
versed feature F7, in Temporal Sentence Tracker (mentioned
in Sec. 2). The result manifests each above component pro-
vides a positive contribution.

4. CONCLUSION

In this work, we solve the TSG task with a multi-modal in-
stance tracking framework and propose the TSTNet. With
this effective and efficient framework, TSTNet outperforms
state-of-the-arts on two challenging benchmarks.
Acknowledgments. This work was supported by National
Natural Science Foundation of China under No. 61972448.
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