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ABSTRACT

In this paper, we propose a study of the cross-domain few-
shot object detection (CD-FSOD) benchmark, consisting of
image data from a diverse data domain. On the proposed
benchmark, we evaluate state-of-art FSOD approaches, in-
cluding meta-learning FSOD approaches and fine-tuning
FSOD approaches. The results show that these methods tend
to fall, and even underperform the naive fine-tuning model.
We analyze the reasons for their failure and introduce a strong
baseline that uses a mutually-beneficial manner to alleviate
the overfitting problem. Our approach is remarkably superior
to existing approaches by significant margins (2.0% on av-
erage) on the proposed benchmark. Our code is available at
https://github.com/FSOD/CD-FSOD.

Index Terms— Few-shot Object Detection, Cross-domain.

1. INTRODUCTION

Few-shot object detection (FSOD) aims to detect novel
classes of objects with a few annotated instances. In the
previous FSOD setting [1, 2], a detector is pre-training on the
source dataset consisting of base classes and then transferred
into the target dataset consisting of novel classes with few
instances, where base classes and novel classes are disjoint
but share similar data domains. However, this underlying
assumption does not apply to some real-world scenarios be-
cause it is difficult or impossible to collect a sufficient amount
of data in these domains. This leads to a new FSOD prob-
lem, where the detector must resort to pre-training in the
base classes from a different domain. In these cases, even
humans have trouble recognizing new categories that vary
too greatly between examples or differ from prior experience
[3, 4]. Thus, finding new approaches to tackle the problem
remains a challenging but desirable goal.

Although conventional FSOD benchmarks [1, 2] are well
established, no works study FSOD across different domains.
To fill this gap, In this paper, we introduce the study of Cross-
Domain Few-Shot Object Detection (CD-FSOD) benchmark
(As shown in Figure 1), which covers three target datasets:
ArTaxOr [6], UODD [7] and DIOR [8]. On the proposed
benchmark, we conduct extensive experiments to evaluate ex-
isting FSOD approaches (including meta-learning approaches

Source Domain
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Fig. 1: The CD-FSOD benchmark. MS COCO [5] is used
for source training, and domains of varying dissimilarity from
natural images are used for target evaluation.

[2, 9, 10] and fine-tuning approaches [11, 12, 13]). The results
show that existing FSOD approaches can not achieve satis-
factory performance and even underperform the naive fine-
tuning model due to freezing parameters. Even without freez-
ing parameters, fine-tuning methods struggle to outperform
the naive transfer model while meta-learning methods still
fail. This finding shows that existing FSOD methods cannot
work for CD-FSOD, and there is an urgent need to develop
new methods.

Besides, we introduce a novel distillation-based baseline,
which enable a “flywheel effect” that the student and teacher
can mutually reinforce each other so that both get better and
better as the training goes on. Specifically, EMA (Exponential
Moving Average) enables the teacher model to ensemble the
student models in different time steps. The student’s weights
are optimized by the distillation loss between the pseudo-
labels generated by the teacher and the predictions by the stu-
dents on the same image. Our approach outperforms existing
FSOD approaches by a large margin on the proposed bench-
mark. In summary, our main contributions are as follows:
(1)we established the CD-FSOD benchmark, where there is
a very large domain difference between the base and target
datasets; 2) on the proposed benchmark, we evaluate existing
FSOD approaches, and analyze the reasons for their failure;
3) we introduce a strong baseline that achieves state-of-the-art
performance on the proposed benchmark.
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2. PROPOSED BENCHMARK.

Rethinking FSOD Benchmarks. In previous FSOD work
[1, 2, 10, 9, 11, 12, 13], two benchmarks have been widely
adopted: MS COCO [5] and PASCAL VOC [14]. As for PAS-
CAL VOC, there are three random split groups, and each of
them covers 20 categories, which are randomly divided into
15 base classes and 5 novel classes. Each novel category has
K = 1, 2, 3, 5, 10 objects sampled from the combination of
VOC07 and VOC12 train/val set for few-shot detection train-
ing. As for MS COCO, the 60 categories disjoint with VOC
are denoted as base classes while the remaining 20 classes
are used as novel classes with K = 1, 2, 3, 5, 10, 30 shots.
5k images from the validation set are used for evaluation and
the rest are used for training. While these benchmarks con-
tributed to the research progress in FSOD, they have a limita-
tion. As we discussed in Section 1, these benchmarks sample
base classes and novel classes from a single dataset. There is
a major issue that occurs commonly in practice: by the na-
ture of the problem, collecting data from the same domain
for many FSOD tasks is difficult. Under these circumstances,
useful knowledge may still be effectively transferred across
different domains, implying that approaches designed in the
FSOD setting may not continue to perform well when applied
to different domains, such as biological natural images and
satellite images. Currently, no works study this scenario.
CD-FSOD Benchmark. To explore FSOD across a wide
range of domains, we propose to build the benchmark us-
ing datasets from a wide range of domains rather than just a
subset of natural image datasets. Our proposed benchmark in-
clude a base dataset (MS COCO [5] and 3 target datasets from
diverse domains: ArTaxOr [6], UODD [7] and DIOR [8]. The
selected datasets reflect well-curated real-world use cases for
few-shot object detection. In addition, collecting enough ex-
amples from the above domains is often difficult, expensive,
or in some cases not possible. The similarity of these datasets
to the MS COCO dataset, from high to low, is as follows: 1)
ArTaxOr images are natural but are fine-grained (specific to
biology); 2) UODD images are less similar as the poor visibil-
ity and low color contrast, but are still color images of natural
scenes; 3) DIOR images are the most dissimilar as they have
lost perspective distortion. The statistics of the target dataset
are shown in Table 1. Similar to the previous FSOD setting
[1, 2], the model is trained from a base dataset where each
class has abundantly annotated instances, then is adapted to
the target dataset where each class only has K (K = 1, 5, 10)
instances.

Domain Dataset Classs Train images Test images

Biology ArTaxOr 7 13,991 1,383
Underwater UODD 3 3,194 506

Aerial DIOR 20 18,463 5,000

Table 1: The statistics of the target datasets.

3. PROPOSED METHOD

Overview. As shown in Figure 2 (a), our approach consists
of two stages: the training stage and the testing stage. At
the training stage, we simply train the detector using the base
data. At the beginning of the fine-tuning, we duplicate the
initialized detector into the student model. The student first
goes through a burn-in step, i.e. training the student with the
standard detection supervision losses [15] on K-shot target
instances. Then its weights are copied into the student and the
teacher to initiate the distillation step. As shown in Figure 2
(b), in the distillation step, the teacher and student are trained
in a mutually-beneficial manner, where the teacher promotes
the student by the distillation loss, and its weights are updated
by the student model via exponential mean average (EMA).
The proposed method consists of two branches: the super-
vised branch and the distillation branch. The final loss L is
the sum of supervised loss LS and distillation loss LD.

L = LS + λLD (1)

where the λ is a hyper-parameter. As pointed out by prior
works [16], a key factor in improving the teacher is the di-
versity of student; thus, we use strongly augmented images as
input for the student, but we use weakly augmented images as
input to the teacher to provide reliable pseudo-labels.
Supervised branch. In the supervised branch, we compute
the supervised detection losses (classification loss Lcls and
localization loss Lloc) for the student model. With the K-
shot target data Ds = {xsi , ysi }

Ns

i=1, the supervised detection
loss LS is written as:

LS =
∑
i

Lcls(x
s
i , y

s
i ) + Lloc(x

s
i , y

s
i ) (2)

Distillation branch. As shown in Figure 2 (b), the teacher
and student share the same architecture and are initialized
with the same weights after the burn-in step. An image is
processed independently by both the student and the teacher.
The teacher is used to generate thousands of box candidates
for the weakly augmented version. After NMS [15]) is per-
formed, only candidates with the foreground score higher
than a threshold δ are retained as the pseudo boxes pdi . Then
the distillation loss is obtained by calculating the detection
loss between the student predictions xdi and the pseudo-labels.

LD =
∑
i

Lcls(x
d
i , p

d
i ) + Lloc(x

d
i , p

d
i ) (3)

Model update. EMA update has been shown to be successful
in many prior works [17, 18, 19]. Thus, we use it to alleviate
the overfitting problem in the CD-FSOD setting. Specifically,
we detach the student and the teacher. After obtaining the
pseudo-labels from the teacher, only the learnable weights of
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Fig. 2: (a) The overview of our proposed approach. (b) Distillation step.

the student Ws is updated via back-propagation

Ws ←Ws + γ
∂L

∂Ws
(4)

where the γ denotes the learning rate. Then, the teacher model
weights Wt are updated from the student model weights Ws

by exponential moving average (EMA) [20]. At each itera-
tion, we update the teacher weights by:

Wt ← αWt + (1− α)Ws (5)

where the α is a hyper-parameter.

4. EXPERIMENT

4.1. Implementation details

For a fair comparison, we follow previous work [2, 10, 9, 11,
12, 13] to use Faster-RCNN [15] with FPN [21] and ResNet-
50 backbone [22] to build the student and teacher. For gen-
erating the pseudo boxes, we use confidence threshold δ =
0.7. For the data augmentation, we apply random horizontal
flips for weak augmentation and randomly add color jittering,
grayscale, Gaussian blur, and cutout patches for strong aug-
mentations. Our implementation builds upon the Detectron2
framework. For the baselines[2, 10, 9, 11, 12, 13], we use the
official implementations: A-RPN1,H-GCN2, Meta-RCNN3,
TFA4, FSCE5, DeFRCN6. FRCN-ft is a Faster R-CNN [15]
detector which is simply trained on the base dataset, then fine-
tuned on the K-shot target instances. The teacher is used for
the inference and evaluation of test images.

4.2. Main Results

As shown in Table 2, our proposed approach outperforms
existing FSOD approaches in all settings. Overall, our ap-

1https://github.com/fanq15/FewX
2https://github.com/GuangxingHan/QA-FewDet
3https://github.com/guangxinghan/

meta-faster-r-cnn
4https://github.com/ucbdrive/

few-shot-object-detection
5https://github.com/megvii-research/FSCE
6https://github.com/er-muyue/DeFRCN

proach produces an average 2.0% improvement over the
second-best approach on the three datasets. We further ob-
serve that all approaches obtain performance gains without
freezing parameters. This confirm that freezing some param-
eters [23, 24, 25] can not alleviate the overfitting problem in
the CD-FSOD. Moreover, these approaches still do not show
satisfactory performance. The meta-learning approaches still
fail to outperform naive fine-tuned models in all settings. This
suggests that meta-learning approaches use supervision for
pre-training and cannot mimic distant domain datasets, which
leads them to overfit the source data and generalize poorly to
distant target domains. The fine-tuning approaches DeFRCN
and FSCE have only a slight performance improvement over
FRCN-ft. This suggests that these approaches tailored for
FSOD do not work with CD-FSOD. There is a desirable
need to develop approaches that work under both FSOD and
CD-FSOD.

4.3. Ablation Studies

In this section, we show the ablation experiments on the
DIOR dataset.
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Fig. 3: Ablation studies for (a) EMA rate α, (b) pseudo-
labeling threshold δ, and (d) distillation loss weights λ.

EMA and Distillation. As shown in Table 3, the EMA and
distillation both improve the performance but EMA achieves
better performance than distillation. The combination of dis-
tillation and EMA, leads to even better performance. We also
observe that the performance of the students increases with
the performance of the teacher. This means that our proposed
approach enables students and teachers to progress together in
a mutually beneficial manner. Extensive research has shown

https://github.com/fanq15/FewX
https://github.com/GuangxingHan/QA-FewDet
https://github.com/guangxinghan/meta-faster-r-cnn
https://github.com/guangxinghan/meta-faster-r-cnn
https://github.com/ucbdrive/few-shot-object-detection
https://github.com/ucbdrive/few-shot-object-detection
https://github.com/megvii-research/FSCE
https://github.com/er-muyue/DeFRCN


Method/Shot ArTaxOr UODD DIOR Avg1 5 10 1 5 10 1 5 10

A-RPN [11] 2.5−1.1 8.1−3.1 13.9−4.2 3.3−1.0 8.4−2.3 10.8 −1.6 7.5−1.2 17.1−2.7 20.3−2.4 10.2−2.1

Meta-RCNN [9] 2.8−0.9 8.5−2.4 14.0−3.7 3.6−0.8 8.8−2.1 11.2−1.3 7.8 −2.3 17.7−2.5 20.6−1.8 10.6−1.9

H-GCN[10] 2.6−0.6 8.2−1.9 14.2−3.3 3.8−0.7 7.7−1.5 11.0 −1.6 7.9−1.9 18.0−2.6 20.9−2.2 10.5−1.8

TFA w/cos [2] 3.1−2.3 8.8−5.0 14.8−7.7 4.4−1.7 8.7 −2.2 11.8−4.6 8.0−4.1 18.1−7.8 20.5 −7.1 10.9 −4.7

FSCE [12] 3.7−1.9 10.2−4.3 15.9 −5.1 3.9−1.1 9.6 −2.9 12.0−3.6 8.6−3.0 18.7−3.8 21.9−3.6 11.6−3.2

DeFRCN [13] 3.6−0.7 9.9−1.1 15.5−1.0 4.5−0.8 9.9−1.0 12.1−1.4 9.3−1.3 18.9−1.2 22.9−2.2 11.8−1.2

FRCN-ft 3.4 9.3 15.2 4.1 9.2 12.3 8.4 18.3 21.2 11.2
Ours 5.1 12.5 18.1 5.9 12.2 14.5 10.5 19.1 26.5 13.8

Table 2: The performance (mAP) on the CD-FSOD benchmark. The best results are in bold. Red numbers indicate performance
degradation due to frozen parameters.

EMA distillation 1 5 10

S T S T S T

X 8.4 9.2 18.3 18.7 21.2 24.8
X 8.6 8.9 18.4 18.5 22.3 23.1

X X 9.5 10.5 18.8 19.1 23.6 26.5

Table 3: The effect of EMA and the distillation. “S” and “T”
represent the student and the teacher respectively.

that there is an overfitting problem in FSOD. We argue that
EMA and distillation can effectively alleviate the problem in
FSOD. With EMA, the teacher can be seen as an average
model of the student over different steps, so it is more stable
and robust. And the distillation loss can be seen as a regular-
ization, which can improve the generalization of the student.
EMA rate. We evaluate the model using various EMA rates
α from 0.5 to 0.9999, and present the mAP results in Figure
3 (a). When the EMA ratio is small (e.g., α = 0.5), the stu-
dent contributes more to the teacher model in each iteration,
which leads to an unstable teacher model with a lower mAP.
This situation can be stabilized and improved as the EMA ra-
tio α increases. It performs the best mAP when the EMA ratio
α reaches 0.999. However, if the EMA rate α keeps increas-
ing, the teacher model performance will degrade because the
teacher model mainly derives the next model weights from
the previous teacher model weights.
Pseudo-labeling thresholding. Pseudo-labeling threshold-
ing plays an important role in the distillation loss, as it can
filter the low-confidence predicted bounding boxes. As shown
in Figure 3 (b), if the threshold is too low (e.g. α = 0.6), the
mAP of the model is low because the model predicts more un-
reliable bounding boxes. On the other hand, the performance
of a model using an excessively high threshold (e.g., α = 0.9)
degrades as it cannot predict a sufficient number of bounding
boxes in its generated pseudo-labels.
Distillation loss weight. To examine the effect of the distil-
lation loss weight, we vary the distillation loss weight λ from
1.0 to 8.0. As shown in Figure 3 (c), with a lower distilla-
tion loss weight λ = 1.0, the model has a lower performance.

On the other hand, we observe that the model performs the
best with the loss weight λ = 4.0 (1-shot and 10-shot) or 3.0
(5-shot).

Ground-
truth

Ours

FRCN-ft

Fig. 4: Detection examples based on 10-shot setting. FRCN-
ft leads to three types of false detections: missed detection of
certain objects (the third example in the third row), incorrect
detection of background (the second example in the third row)
and inaccurate localization (the first example in the third row).
For these examples, our approach reduces the occurrence of
these errors.

5. CONCLUSION

In this paper, we formally introduce the study of the cross-
domain few-shot object detection (CD-FSOD) benchmark,
which covers several target domains with varying similarities
to natural images. On the proposed benchmarks, we evaluate
existing FSOD approaches and analyze the reasons for their
failure. Then, we introduce a strong baseline that achieves
state-of-the-art performance on the proposed benchmark. In
the future, we will work on developing novel approaches for
both FSOD and CD-FSOD.
Acknowledgement. The authors wish to acknowledge CSC
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