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ABSTRACT

Existing weakly supervised sound event detection (WSSED)
work has not explored both types of co-occurrences simul-
taneously, i.e., some sound events often co-occur, and their
occurrences are usually accompanied by specific background
sounds, so they would be inevitably entangled, causing mis-
classification and biased localization results with only clip-
level supervision. To tackle this issue, we first establish a
structural causal model (SCM) to reveal that the context is
the main cause of co-occurrence confounders that mislead
the model to learn spurious correlations between frames and
clip-level labels. Based on the causal analysis, we propose a
causal intervention (CI) method for WSSED to remove the
negative impact of co-occurrence confounders by iteratively
accumulating every possible context of each class and then
re-projecting the contexts to the frame-level features for mak-
ing the event boundary clearer. Experiments show that our
method effectively improves the performance on multiple
datasets and can generalize to various baseline models.

Index Terms— Causal intervention, weakly supervised
sound event detection, structural causal model

1. INTRODUCTION

Sound event detection (SED) involves two subtasks: one is
to recognize the types of sound events in an audio clip (au-
dio tagging), and the other is to pinpoint their onset and off-
set times (localization). Since frame-level labels are costly to
collect, weakly supervised sound event detection (WSSED)
[1, 2] has gained an increasing research interest, which has
only access to weak clip-level labels in the training stage, yet
requires to perform the frame-level prediction of onset and
offset times during evaluation.

However, one challenging problem of WSSED is that
some sound events often co-occur in an audio clip (e.g., the
two classes “train” and “train horn” in DCASE2017 task4
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dataset [3]). As a result, it is difficult to distinguish those
frequently co-occurring sound events in an audio record-
ing, since the model will inevitably relate the sound event
class of “train” with that of “train horn”, which interferes
with the recognition and detection of each other. Some ap-
proaches have been proposed to address this issue. In [4],
graph Laplacian regularization was introduced to model the
co-occurrence of sound events for strong labeled SED. In [5],
Lin et al. proposed a disentangled feature, which re-models
the high-level feature space so that the feature subspace can
be different for each sound event. However, the co-occurrence
issue is not just between sound events as sound events also
usually co-occur with specific background sounds. Thus, the
sound events and background sounds would be inevitably
entangled, causing the model to falsely generate ambiguous
frame-level localization results with only clip-level supervi-
sion. In this work, we target the co-occurrence issue from
the two aspects mentioned above for WSSED, which we call
“entangled context”. The “entangled context” would lead to
misclassification and biased localization results, including the
wrongly confusing co-occurring sound events and entangled
background sounds. Therefore, we argue that resolving the
“entangled context” issue is essential for WSSED.

In this paper, we attempt to address this issue with causal
intervention (CI) method, called CI-WSSED. CI-WSSED at-
tributes the “entangled context” to the frequently co-occurring
sound events and specific background sounds that mislead the
model to learn spurious correlations between frames and clip-
level labels. To find those frames which truly contribute to
the clip-level labels in an audio clip, we first establish a struc-
tural causal model (SCM) [6] to clarify the causal relation
among frame-level features, contexts, and clip-level labels,
revealing that the context is the main cause of co-occurrence
confounders. Ideally, if we could collect enough audio clips
covering all the combinations of different sound event co-
occurrences under various background sounds in a balanced
distribution, we can distinguish any sound event from them
easily. However, it is labor-intensive or even impossible to
collect such a huge dataset for each sound event class. To this
end, we employ causal intervention to intervene the input to
be under any possible context in an approximate way. Based
on the causal analysis, CI-WSSED is then designed to operate
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Fig. 1. (a) The structural causal model (SCM) for WSSED.
(b) The intervened SCM based on backdoor adjustment for
WSSED.

in an iterative procedure, which is achieved by accumulating
the contextual information for each class and then employing
it as attention to enhance the frame-level representation for
making the sound event boundary clearer.

In summary, the contributions of this paper are as follows:
1) Our work is the first to concern and reveal the “entan-
gled context” issue of WSSED from both aspects of entan-
gled co-occurring sound events and background sounds. 2)
We are the first to introduce causal intervention into WSSED
for the “entangled context” issue and design a new network
structure, called CI-WSSED, to embed the causal interven-
tion into the WSSED pipeline with an end-to-end scheme.
3) Experiments show that our CI-WSSED yields significant
performance gains on WSSED datasets and can generalize to
various baselines.

2. CAUSAL INTERVENTION

The goal of causal learning is to enable the model to pursue
causal effects: it can eliminate the spurious bias and disen-
tangle the desired model effects by pursuing the true causal
effect [7]. Nowadays, the structural causal model (SCM) is
commonly utilized in causal learning scenarios. SCM em-
ploys a graphical formalism in which nodes are represented
as random variables and directed edges represent the direct
causal relationship between these variables. As shown in Fig.
1(a), the conditional distribution P (Y |X) expresses the like-
lihood of Y given X , where Y is not only caused by X via
X → Y , but also C via the correlation C → X → Y .

To find the causal effect of variable X on variable Y , do-
calculus is introduced [8]. In detail, causal intervention [9]
fixes the target variableX to a constant x, denoted as do(X =
x), rendering it independent of its causes, so the causal effect
of X on Y is formulated as:

P (Y |do(X = x)), (1)

where the do-notation denotes intervening to set variable X
to the value x, thereby removing all incoming arrows to the
variable X , as shown in Fig. 1(b). In this way, we can lever-
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Fig. 2. Overview of our proposed CI-WSSED approach.

age P (Y |do(X)) to pursue the true causality and remove the
negative effect of confounders.

A straightforward way to intervene X is conducting a
randomized controlled trial [10] with an ideal huge dataset,
which contains audio clips of all kinds of sound event co-
occurrences under various background sounds. Therefore, the
spurious correlation C → X is cutoff and then P (Y |X) =
P (Y |do(X)). Since this kind of intervention is impossible
due to the huge cost of collecting such a large dataset for each
sound event, we apply the backdoor adjustment [11] to ap-
proximate it. In the following section, we will detail how we
leverage this solution to WSSED in our approach.

3. PROPOSED METHOD

3.1. Structural Causal Model for WSSED

In this part, we will explain why the entangled context hinders
the sound event classification and localization performance
in WSSED. We formulate the causalities among frame-level
features X , contexts C, frame-level predictions M , and pre-
dicted clip-level labels Y , with a structural causal model
(SCM) illustrated in Fig. 1(a). The direct links represent the
causalities between the two nodes: cause → effect.

C → X: We denote C as the prior context knowledge.
This link represents that the extractor produces frame-level
features X under the effect of contexts C. Although the
contextual information improves the association between the
frame-level features X and predicted labels Y via P (Y |X),
P (Y |X) mistakenly associates non-causal but positively cor-
related frames to labels. There are many possible sources of
the contextual bias, which may be from the training process
(e.g., batch normalization) and biased datasets. For example,
the sound events of “train horn” and “train” often occur in
co-occurrence with each other, so the model would be con-
founded to establish a spurious correction between the two
sound event classes, and this causal link will exacerbate the
existing bias.

C → M ← X: We term the mediator M as the X-
specific context, which is directly from X but essentially in-
herited from C. Specifically, the context is a combination
of various other sound events, for instance, when multiple
sound events (e.g., “children playing”, “street music”, and
“dog bark”) occur in an audio clip, the “children playing”
can be seen as the label with its context including “street mu-
sic” and “dog bark”, and the same holds true when the lead is
“street music” or “dog bark”.



Table 1. Performance comparison of CI-WSSED and baseline models on the DCASE2017 task4 validation and evaluation set.

Method
Validation Set Evaluation Set

AT-mAP AT-F1 SED-mAP AT-mAP AT-F1 SED-mAP Seg-F1 Event-F1

Winner SED [12] - - - - 0.526 - 0.555 -
CDur [13] - - - - 0.553 - 0.508 0.152
CNN-biGRU [1] 0.650 0.555 0.456 0.650 0.632 0.444 0.564 -
CNN-Transformer [1] 0.653 0.557 0.437 0.656 0.629 0.454 0.556 -
HTSAT [14] 0.661 0.560 0.524 0.668 0.636 0.535 0.587 0.178

CDur-CI - - - - 0.561 - 0.511 0.164
CNN-biGRU-CI 0.661 0.566 0.462 0.662 0.641 0.453 0.570 -
CNN-Transformer-CI 0.662 0.568 0.449 0.666 0.637 0.461 0.561 -
HTSAT-CI 0.672 0.572 0.531 0.678 0.644 0.544 0.592 0.191

X → Y ← M : These links denote that the sound event
itself and its context together affect the final prediction. How-
ever, a general C cannot directly influence the predicted clip-
level labels Y . Thus, in addition to the direct effect X → Y ,
Y is also the effect of the X-specific context M , which con-
tains the timestamp information of the sound event and its
context.

Considering the impact of contexts C on frame-level fea-
tures X , we will cut off the link from C to X . Next, we will
introduce a causal intervention method to mitigate the nega-
tive impact of contextual bias.

3.2. Causal Intervention via Backdoor Adjustment

As shown in Fig. 1(b), we propose to use P (Y |do(X)) based
on the backdoor adjustment [9, 15] to remove the context con-
founder and pursue the true causality between X and Y . The
key idea is to cut off the link C → X , and stratify C into
pieces C = {c1, c2, ..., ck}, where ci denotes the ith class
context. Formally, we have

P (Y |do(X)) =

k∑
i

P (Y |X = x,M = f(x, ci))P (ci),

(2)
where f(x, ci) represents that M is formed by the combina-
tion of X and C, and k is the number of sound event classes.
As C is no longer correlated with X , the causal intervention
guarantees X to have an equal chance of incorporating ev-
ery context ci into Y ’s prediction, based on the proportion of
each ci in the whole. However, the cost of the network for-
ward propagation for all the k classes is expensive. Thanks to
the Normalized Weighted Geometric Mean [16], we can opti-
mize Eq. (2) to approximate the above expectation by moving
the outer sum

∑n
i P (ci) into the feature level

P (Y |do(X)) ≈ P (Y |X = x,M =

k∑
i

f(x, ci)P (ci)).

(3)
Thus, we only need to feed-forward the network once instead
of k times. To simplify the formula, we assume roughly the

same number of samples for each class in the dataset, soP (ci)
is set as the uniform 1/k. After simplifying Eq. (3), we have

P (Y |do(X)) ≈ P (Y |x⊕ 1

k

k∑
i

f(x, ci)), (4)

where ⊕ denotes projection. Therefore, the “entangled
context” issue has been transferred to the calculation of∑k

i f(x, ci). Next, we will introduce a context adjustment
pool to represent

∑k
i f(x, ci).

3.3. Network Structure

In this part, we implement causal intervention for WSSED
with a novel network structure, called CI-WSSED. Fig. 2 il-
lustrates the overview of our CI-WSSED. First, the feature ex-
tractor (e.g., the CNN, RNN or Transformer-based backbone)
takes the mel-spectrogram as input and produces high-level
features X ∈ Rc×n, where c is the number of channels and n
is the number of audio frames. Then, the frame-level features
X are fed into the classifier with a fully connected layer fol-
lowed by an aggregator (e.g., an average pooling function) to
produce clip-level prediction results.

We maintain a context adjustment pool Q ∈ Rk×n for
each sound event class during the training stage, which is the
core of our CI-WSSED. According to Eq. (4), Q is designed
to continuously store the contextual information of each oc-
curring sound event, and then re-project the accumulated con-
texts onto the frame-level features X generated by the back-
bone to produce enhanced features Xe ∈ Rc×n. In detail,
the context adjustment pool is updated by fusing the con-
texts of each occurring sound event in frame-level predictions
M = f(x, ci), which is followed by a batch normalization:

Qj = BN(Qj + λ×Mj), (5)

where j represents the class index of each occurring sound
event that we can get from the clip-level labels of each audio
clip, and λ denotes the update rate. Then, the enhancement of
frame-level features can be formulated as:

Xe = X +X � Conv(Qj), (6)



Table 2. Performance comparison of CI-WSSED and base-
line models on the weakly labelled UrbanSED test set.

Method AT-F1 Seg-F1 Event-F1

Base-CNN [17] - 0.560 -
HTSAT [14] 0.771 0.644 0.210
CDur [13] 0.771 0.647 0.217

HTSAT-CI 0.776 0.646 0.216
CDur-CI 0.774 0.648 0.220

where � denotes matrix dot product and Conv represents
the 1 × 1 convolution. In this way, we can not only miti-
gate the impact of “entangled context” including entangled
co-occurring sound events and background sounds, but also
spotlight the active regions of the frame-level features, thus
reducing classification errors and boosting localization per-
formance.

During the training phase, our proposed network learns
to minimize the cross-entropy losses for both classification
branches. Specifically, we adopt two classifiers with shared
weights for the two branches. The first classifier is used to
produce initial prediction scores S = {s1, s2, ..., sk}, and the
second classifier is accountable for generating more accurate
prediction scores Se = {se1, se2, ..., sek} using the enhanced
frame-level features. Then, the cross-entropy losses for both
classification branches are optimized to train the two classi-
fiers together in an end-to-end pipeline. The overall loss func-
tion L is formulated below:

L = (−
k∑

i=1

s∗i log(si)) + (−
k∑

i=1

s∗i log(s
e
i )), (7)

where s∗ is the ground-truth label of an audio clip. While in
the inference stage, we use the enhanced features to produce
the final frame-level prediction results.

4. EXPERIMENTS AND RESULTS

4.1. Dataset

We evaluate our method on the two public sound event de-
tection datasets: DCASE2017 task4 [3] and UrbanSED [17]
datasets. The DCASE2017 task4 – Large-scale weakly su-
pervised sound event detection for smart cars dataset is com-
prised of a training subset with 51172 audio clips, a valida-
tion subset with 488 audio clips, and an evaluation set with
1103 audio clips, including 17 sound events. The UrbanSED
dataset has 10 event labels within urban environments, di-
vided into 6000 training, 2000 validation, and 2000 evalua-
tion audio clips.

4.2. Baseline Models and Training Details

To evaluate the effectiveness and generalization of our CI-
WSSED, we apply our method to multiple baseline systems,

including CDur [13], CNN-biGRU [1], CNN-Transformer [1]
and HTSAT [14]. CDur consists of a 5-layer CNN and a
bidirectional Gated Recurrent Unit (biGRU), while the CNN-
biGRU system is modeled by a 9-layer CNN with a biGRU.
The CNN-Transformer consists of a 9-layer CNN with one
transformer block. HTSAT uses the Swin Transformer [18]
backbone with ImageNet-pretraining, where we use 3 net-
work groups with 2, 2, 6 swin-transformer blocks for the
DCASE2017 task4 dataset, and for the UrbanSED dataset, we
only adopt two stages with 2, 2 swin-transformer blocks. The
update rate is set as λ = 0.01. We use audio tagging mAP (AT-
mAP), audio tagging F1 score (AT-F1), sound event detection
mAP (SED-mAP), Segment-F1 score (Seg-F1) and Event-F1
score to evaluate our method.

4.3. Results on DCASE2017 Task4

We first report our experiment results on both DCASE2017
task4 validation set and evaluation set in Table 1. We use
baseline-CI to represent baseline models using our causal
intervention method. It can be seen that our method achieves
significant performance boosts on all baseline models, es-
pecially on the mAP, AT-F1 and Event-F1 metrics, which
demonstrates the effectiveness of our CI-WSSED in reducing
classification errors and localizing entire sound events.

4.4. Results on UrbanSED

As shown in Table 2, we compare previous methods on the
UrbanSED dataset with our CI-WSSED. It is clear that our
CI-WSSED also achieves consistent improvements compared
to the previous corresponding models. Notably, after apply-
ing the causal intervention method, the performance gain of
UrbanSED is not as significant as that of the DCASE2017
task4 dataset. We infer the reason is that there are many sound
event classes within the DCASE2017 task4 dataset that often
co-occur [13], such as the sound events of “train” and “train
horn”, as well as “car”, “car alarm”, and “car passing by”, so
the DCASE2017 task4 dataset suffers more from the “entan-
gled context” and thus benefits more from our CI-WSSED.

5. CONCLUSIONS

In this paper, we target the “entangled context” problem in
the WSSED task from both aspects of entangled co-occurring
sound events and background sounds. Through analyzing the
causal relationship between frame-level features, contexts,
and clip-level labels with the help of the SCM, we pinpoint
the context as a co-occurrence confounder and then propose
an end-to-end CI-WSSED method to deal with the effect.
Experiments show that the “entangled context” is a practical
issue within the WSSED task and our CI-WSSED pipeline
can effectively boost the performance of WSSED on multiple
datasets and generalize to various baseline models.
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