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ABSTRACT

We present a multi-speaker Japanese audiobook text-to-speech
(TTS) system that leverages multimodal context information of
preceding acoustic context and bilateral textual context to improve
the prosody of synthetic speech. Previous work either uses unilat-
eral or single-modality context, which does not fully represent the
context information. The proposed method uses an acoustic context
encoder and a textual context encoder to aggregate context infor-
mation and feeds it to the TTS model, which enables the model to
predict context-dependent prosody. We conducted comprehensive
objective and subjective evaluations on a multi-speaker Japanese au-
diobook dataset. Experimental results demonstrate that the proposed
method significantly outperforms two previous works. Additionally,
we present insights about the different choices of context - modal-
ities, lateral information and length - for audiobook TTS that have
never been discussed in the literature before.

Index Terms— text-to-speech synthesis, TTS, audiobook,
speech prosody, context modeling

1. INTRODUCTION

Recent text-to-speech (TTS) systems based on deep neural networks
(DNNs) have been able to synthesize natural read-out speech [1, 2,
3]. However, how to synthesize speech with a lot of prosody varia-
tions like audiobooks remains unsolved. Synthesizing such speech
requires the system to not only transform linguistic information but
also para-/non-linguistic information such as emotions, and inten-
tions from text to speech [4, 5, 6]. Speech prosody in audiobooks
produced by professional speakers depends on several factors includ-
ing characteristics, context, and styles (narration or dialogue) [7].
Among these factors, context, either acoustic or textual, is popu-
larly utilized in the literature to improve the prosody of audiobook
TTS [8, 9, 10, 11]. This is because (1) consecutive utterances always
have sequential relations in audiobooks; (2) unlike characteristics
and other factors, context requires no additional cost to get.

However, existing work either (1) uses only single-modality
context or (2) uses unilateral context which cannot fully leverage the
power of context information. Gallegos et al. first proposed to use
acoustic context to improve the prosody of audiobook TTS [8]. In
their following work, they further used acoustic and textual contexts
in audiobook TTS [9], but only preceding contexts were used. Xu
et al. first proposed to use pretrained bidirectional encoder repre-
sentations from transformers (BERT) [12] to encode preceding and
succeeding sentences to incorporate textual context information in
audiobook TTS [10]. Nakata et al. also used BERT embeddings, but
only in an implicit way by encoding the target sentences with the

∗This work was supported by JST SPRING, Grant Number JPMJSP2108.

bilateral context [11]. All of these works only used textual context
with one or two sentences without trying longer context.

In this paper, we present a multi-speaker Japanese audiobook
TTS system that fully and explicitly utilizes preceding acoustic con-
text and bilateral textual context to improve the prosody of synthetic
speech. The proposed method first uses an acoustic context encoder
(ACE) [8] to encode preceding mel-spectrograms as acoustic con-
text representations. Moreover, we propose a textual context en-
coder (TCE) based on attention mechanisms to extract textual con-
text representations from BERT embeddings of bilateral textual con-
text. These context representations are then fed to a multi-speaker
TTS model to guide it to synthesize the target utterance with appro-
priate prosody. We conducted comprehensive experiments with both
objective and subjective evaluations to verify the effectiveness of the
proposed method. We further compared how different modalities,
laterals, and lengths of context influence the prosody of audiobook
TTS, which was never studied in previous work. Our contributions
are summarized as follows:

• We propose a multi-speaker Japanese audiobook TTS system
with acoustic and textual context encoding mechanisms.

• We conduct comprehensive objective and subjective experi-
ments to show the effectiveness of the proposed method.

• We further conduct experiments to find the best combina-
tion of context modalities, laterals, and lengths for audiobook
TTS.

Audio samples are publicly available1.

2. RELATED WORK

Methods of audiobook TTS can be roughly grouped into two
categories: single-sentence and multi-sentence methods. Single-
sentence methods synthesize one utterance at a time, and improves
speech prosody by feeding auxiliary features like context [8, 9, 10],
emotions [13], and features extracted by DNNs like variational au-
toencoder [14, 15] and global style tokens (GST) [16]. Sufficient
and correct prosody information should be maintained to guarantee
satisfactory speech quality in such methods.

Multi-sentence methods, on the other hand, synthesize multiple
sentences at a time. The length of the target sequence ranges from
three sentences [17] to a whole paragraph [18]. While such methods
are potentially better than single-sentence methods, it requires more
memory and sophisticated training process.

The proposed method in this work is a single-sentence method
utilizing both acoustic and textual contexts.

3. PROPOSED METHOD

The general architecture of the proposed method is illustrated in Fig-
ure 1. The model contains three components: an improved multi-

1https://aria-k-alethia.github.io/2022rat-demo/
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Fig. 1. Architecture of the proposed method.

speaker FastSpeech2 [3] for mel-spectrograms synthesis, an acoustic
context encoder and a textual context encoder for context encoding.
We introduce these components separately in the following sections.

3.1. Improved multi-speaker FastSpeech2

We follow the original FastSpeech2 [3] to construct the TTS model
that contains a phoneme encoder, a variance adaptor, and a mel-
spectrograms decoder. To adapt the model to a multi-speaker setting,
we first create a look-up embedding table for speakers. The speaker
embedding is summed to the output of the phoneme encoder and fed
to the following modules to generate mel-spectrograms for the cor-
responding speaker. Second, we also use speaker-dependent pitch
normalization [19] to disentangle speaker information from pitch
values. Specifically, for a pitch value ps of speaker s of a voiced
frame, we normalize it to p̄s by: p̄s = ps−µs

σs
, where µs, σs are

the mean and standard deviation values of the pitch of the speaker s,
respectively.

We also notice that the utterances of audiobooks are longer than
utterances in read-out corpus, but the absolute positional encod-
ing [20] used in the original FastSpeech2 cannot well handle long
sequences. To solve this problem, we replace the absolute positional
encoding with relative positional encoding [21] so that the model
can handle sequences with any length. We follow the previous
work [21] and add relative positional embeddings to the attention
layers of both the encoder and the decoder. The clipping distance is
set to 4 so that the model can capture relative position differences
within this value. For more details please refer to the original paper.

Finally, the original FastSpeech2 uses a length regulator in the
variance adaptor before the pitch and energy predictors so that the
model outputs frame-level pitch and energy, which makes the syn-
thesized speech unstable. Therefore we move the length regulator
after the two predictors to learn phoneme-level pitch and energy. In
our preliminary experiments, we found all of the aforementioned
modifications could improve the overall performance.

The deterministic nature of the above model makes it difficult to
synthesize speech with various prosodies. Therefore, the proposed
method further uses two context encoders to incorporate context in-
formation into the model.

3.2. Acoustic context encoding

In audiobooks it can be assumed that the prosodies of consecutive
utterances have minor differences, hence using acoustic context
can intuitively make consecutive utterances more coherent in single-
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Fig. 2. Architecture of TCE. FC denotes fully connected layer.

sentence audiobook TTS methods. To this end, the proposed method
uses ACE to encode acoustic context. Since during inference, only
preceding utterances are available, ACE only encodes preceding
acoustic context. Supposing the index of the target utterance for
synthesis is N , we use GST as the implementation of ACE to
extract a fixed-length acoustic context vector from the (N − 1)-
th mel-spectrogram. The context vector is summed to the output
of the phoneme encoder to assist the synthesis of the N -th mel-
spectrogram. Note that, although during training we use the ground
truth (GT) (N − 1)-th mel-spectrogram as the input of ACE, during
inference we use the synthesized one as the input.

Following previous work [8], we set an extra next-prediction
task for ACE. As Figure 1 illustrates, we use an acoustic encoder
(AE) to extract a fixed-length vector from theN -th mel-spectrogram.
Here AE is implemented as another GST module that has different
parameters from the one of ACE. We then minimize the L1 distance
between the two vectors extracted by ACE and AE. While previous
work doesn’t explain why the extra task is effective [8], we suppose
this is because the extra task forces ACE to learn a corresponding
relation between the (N − 1)-th and the N -th mel-spectrograms.
During training, we add the L1 loss term to the loss function of the
TTS model and jointly train the whole model.

3.3. Textual context encoding

Textual context is also an informative source for producing appropri-
ate prosody. Phrases like “a man/woman says”, and “happily/sadly”
in the contexts can be useful cues to predict the prosody of the tar-
get sentence. Therefore we propose a textual context encoder (TCE)
to incorporate textual context information in the model. The archi-
tecture of TCE is illustrated in Figure 2. First, the bilateral con-
text and the target text are fed to a pretrained BERT model to ex-
tract word embeddings. Note that, different from most previous
works [9, 10, 11], we set the context length of each lateral to k
characters instead of setting it to a certain number of sentences, by
which we can easily evaluate model performance with different con-
text lengths. The word embeddings of the target sentence are then
fed to a gated recurrent unit (GRU) [22], and the last hidden state
of GRU is used as the sentence embedding of the target sentence.
Next, the sentence embedding is used as a query vector in two atten-
tion modules with the word embeddings of preceding and succeed-
ing contexts as keys and values to extract bilateral context vectors.
Finally, the two context vectors and the sentence embedding are con-
catenated together and fed to a fully connected (FC) layer to get the
textual context vector. This vector is then summed to the output of



the phoneme encoder to incorporate textual context information in
the TTS model.

4. EXPERIMENTS
4.1. Setup
We used J-MAC, a multi-speaker Japanese audiobook corpus pro-
duced by professional speakers, as the dataset [23]. We selected
9 speakers from J-MAC who at least have 3 books to ensure each
speaker has sufficient data for training. We then randomly picked up
gender-balanced 6 speakers from the 9 speakers as the test speakers
and excluded one audiobook for each test speaker from the training
set as the test set. The final training set contained about 7 hours of au-
dio data. For the BERT model in TCE, we used ”bert-base-japanese-
v2”2 pretrained on 4GB Japanese Wikipedia data. We used the out-
put of the last layer of the BERT model as the word embeddings
used in TCE. OpenJTalk3 was used to convert Japanese characters to
phonemes. For the forced alignment we used Julius [24] to get the
duration of each phoneme. The pitch values were extracted by the
WORLD vocoder [25]. We used the pretrained “UNIVERSAL_V1”
HiFi-GAN model4 to convert mel-spectrograms into time-domain
waveforms.

For the TTS model we used the same parameter setting as the
one of the previous work [3] except for the modifications mentioned
in Section 3.1. The dimension of the speaker embedding was set
to 256. In ACE, the GST token number was set to 10. Following
the original work [26], we used multi-head attention with 8 heads to
improve the robustness. In TCE, the number of hidden units in GRU
was set to 256. The dimension of both the acoustic and the textual
context vectors was set to 256 so that they could be summed to the
output of the phoneme encoder.

During training, the batch size was set to 32. We used Adam [27]
as the optimizer, with a scheduled learning rate proposed in [20].
However, for the fine-tuning of the pre-trained BERT model in TCE,
we set the learning rate to 10−7. The combined model converged in
around 200k steps.

We trained several variations of the proposed model to study
how different modalities, laterals, and lengths of context influence
the prosody of the synthesized speech. We denote the proposed
method as ATCE-{pre., suc., bi}, where the suffix represents tex-
tual context laterals (pre. for preceding, suc. for succeeding, and
bi for bilateral context). We also trained the proposed models with-
out ACE, which are denoted by TCE-{pre., suc., bi}. We used two
previous methods as the baselines. The first baseline, denoted by
ACE, uses ACE to utilize acoustic context [8]. The second base-
line uses one-sentence bilateral textual context implicitly by feeding
the target sentence with one-sentence bilateral context to the BERT
model but only inputting the word embeddings of the target sentence
to the TTS model [11]. Since the original method of Nakata et al.
didn’t use FastSpeech2 to synthesize mel-spectrograms, we adapted
it to the proposed method by (1) changing the context length to one
sentence and (2) only inputting the target sentence embedding to the
TTS model.

4.2. Objective evaluations

4.2.1. Metrics

In the objective evaluations we used several metrics to evaluate the
synthetic speech:

2https://huggingface.co/cl-tohoku/
bert-base-japanese-v2

3https://open-jtalk.sp.nitech.ac.jp/
4https://github.com/jik876/hifi-gan

Table 1. Results of objective evaluation for the proposed ATCE-bi
model with different context length k. Bold indicates the best score.

k CER(↓) MCD(↓) F0-RMSE(↓) GPE(↓) ACC(↑)
16 0.206 7.69 28.60 13.49 99.18
32 0.206 7.68 28.33 13.21 99.32
64 0.208 7.72 28.19 12.90 98.77
128 0.207 7.64 28.56 13.51 98.77

128→ 64 0.206 7.65 28.43 13.23 98.91

Table 2. Results of objective evaluation for models with different
types of context. Bold indicates the best score. ∗ represents signifi-
cant improvement over the baseline methods with p-value < 0.05.

Model CER(↓) MCD(↓) F0-RMSE(↓) GPE(↓) ACC(↑)
GT 0.192 N/A N/A N/A 96.19

HiFi-GAN 0.208 4.25 14.03 2.2 98.64
ACE 0.207 7.85 29.05 14.16 98.37

Nakata et al. 0.206 7.70 28.89 13.21 98.64
TCE-pre. 0.206 7.71 28.19 13.00 98.64
TCE-suc. 0.206 7.70 28.82 13.18 99.05
TCE-bi 0.207 7.69 28.84 12.94 98.50

ATCE-pre. 0.205 7.68 28.86 13.11 99.18
ATCE-suc. 0.209 7.66 27.93∗ 12.57∗ 98.91
ATCE-bi 0.208 7.72 28.19 12.90 98.77

• Character error rate (CER) computed using Vosk Japanese
speech recognition API5.

• Mel-cepstral distortion (MCD) computed with dynamic
time warping (DTW).

• F0 root mean square error (F0-RMSE) computed with
DTW.

• Gross Pitch Error (GPE) represents the proportion of voiced
frames whose relative pitch error is higher than a certain
threshold (20% in this work).

• Accuracy of speaker classification (ACC) computed by a
speaker classifier trained on the training set.

Here CER and MCD measure the general speech quality, ACC mea-
sures the speaker similarity, F0-RMSE and GPE measure the perfor-
mance on speech prosody.

4.2.2. Textual context length

We first evaluated model performances with different textual context
length k. We trained ATCE-bi with k in {16, 32, 64, 128}. The re-
sult is shown in Table 1. First, all models have similar CER, MCD,
and ACC, which is natural since the proposed method only focuses
on prosody. Second, the best performance is obtained when k = 64,
which demonstrates that increasing textual context length can im-
prove speech prosody, but when the length is too long (k = 128),
the performance degrades. We suppose this is because textual con-
text with a long distance to the target sentence is not relevant for
predicting the target prosody. To verify this hypothesis, we also set
k = 64 in the k = 128 model for inference. As expected, the per-
formance increases slightly in this case (128 → 64) in Table 1),
which implies the correctness of the hypothesis. Given that the aver-
age sentence length of the corpus is 27 characters, our results suggest
that the best textual context length is about 2-3 sentences from either
lateral of the target sentence.

4.2.3. Context modalities and laterals

We then evaluated model performances with different context
modalities and laterals. All of the models were trained with

5https://github.com/alphacep/vosk-api

https://huggingface.co/cl-tohoku/bert-base-japanese-v2
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https://open-jtalk.sp.nitech.ac.jp/
https://github.com/jik876/hifi-gan
https://github.com/alphacep/vosk-api


Fig. 3. Pitch contours of the same utterance synthesized using the
ATCE-bi model with 2 random contexts. “Predicted” represents the
one synthesized with the correct context.

k = 64 obtained in the previous section. The result is shown in
Table 2. First, the proposed ATCE-* models outperform all the
baseline models, which demonstrates the effectiveness of the pro-
posed method. Second, all TCE-* models outperform ACE, which
demonstrates the effectiveness of introducing textual context. Third,
all ATCE-* models except ATCE-pre. have better performance than
the corresponding TCE-* models, which demonstrates the neces-
sity of combining both acoustic and textual context information for
synthesis. Finally, to our surprise, ATCE-suc. using succeeding
textual context obtains the best performance and has better perfor-
mance than ATCE-bi using bilateral textual context. We suppose
this is because the information overlapping between the (N − 1)-th
mel-spectrogram and the preceding texts makes succeeding textual
context more informative for the model. Therefore in such case
using preceding acoustic and bilateral textual contexts together is
probably not beneficial and can even confuse the TTS model. This
hypothesis can also be verified by comparing the performances of
ATCE-pre. and TCE-pre..

We also notice that the accuracy of speaker classification of the
GT model is the worst among all models. We believe this is because
the speakers usually change their voices to act different characters
in the audiobooks, which makes it difficult to recognize the speaker
identity.

4.2.4. Prosody under different contexts

Finally, we verified whether the proposed method actually learned to
predict context-dependent prosody. We selected an utterance from
the test set and synthesized it using the ATCE-bi model with random
contexts. We observed that the model could synthesize the same text
with different tensions. We selected typical examples and visualized
their pitch contours in Figure 3. It can be seen that the prosody varies
a lot with different contexts, which proves that the proposed method
can predict context-dependent speech prosody.

4.3. Subjective evaluations

4.3.1. Multi-sentence speech naturalness MOS test

In the subjective evaluations, we first conducted a standard 5-scale
mean opinion score (MOS) test. We fine-tuned the HiFi-GAN
vocoder on the training set for 3000 epochs with an initial learning

Table 3. Results of MOS evaluation. Bold indicates the best method
without overlapping 95% confidence interval.

Model MOS
ACE 3.26

Nakata et al. 3.30
ATCE-suc. 3.38
ATCE-bi 3.35

Table 4. Results of AB preference evaluation. Bold indicates the
best method with p-value < 0.05.

Method A Score A Score B Method B
ATCE-suc. 0.615 0.385 ACE
ATCE-suc. 0.545 0.455 Nakata et al.

rate 10−5. Following previous work [23], we conducted a five-
sentence MOS test, in which the listeners rate the naturalness of an
audio including five consecutive utterances. In this test we selected
the two baselines and ATCE-{suc., bi.} with the best objective per-
formance obtained in the previous section to evaluate. For each
test speaker we synthesized 10 five-sentence audios, in which we
inserted a 0.5 second pause after each sentence. The duration of
each audio ranges from 40 seconds to 1 minute. We used Lancers6,
a Japanese crowd-sourcing platform, to conduct the test. 32 listeners
joined in the test. Each listener rated 30 audios with 5 dummy
samples at the beginning whose ratings were not counted in the final
result. Each audio had 3 answers on average.

The result is shown in Table 3. It can be seen that all proposed
models outperform the two baseline models, and ATCE-suc. obtains
the best performance, which is consistent with the results of the ob-
jective evaluations. This again demonstrates the effectiveness of the
proposed method.

4.3.2. Preference AB test

Next we conducted a preference AB test using the same five-
sentence audios synthesized in the previous section. We selected
two AB pairs: (ATCE-suc., ACE), (ATCE-suc, Nakata et al.). 40
listeners participated in the test. Each listener rated 10 pairs, in
which 5 pairs have the same audios but different orders from the rest
5 audios. Each pair had 3 answers on average. The result is shown
in Table 4. It can be seen that the proposed ATCE-suc. method
significantly outperforms the two baselines, which is consistent with
the results obtained in the previous section. All in all, the proposed
method utilizing informative acoustic and textual contexts obtains
the best performance in all evaluations.

5. CONCLUSIONS

This paper presented a Japanese multi-speaker audiobook TTS sys-
tem that fully and explicitly utilized preceding acoustic context
and bilateral textual context to improve the prosody of the syn-
thetic speech. Experimental results demonstrated that the proposed
method significantly outperformed two previous work in both ob-
jective and subjective evaluations. We also found it was helpful to
use multimodal contexts and the optimal textual length was about
2-3 sentences. These results can potentially shed light on future
researches in this field. Future work could be extending ACE and
TCE to frame-level resolution.

6https://www.lancers.jp/

https://www.lancers.jp/
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