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ABSTRACT

Image inpainting has achieved fundamental advances with
deep learning. However, almost all existing inpainting meth-
ods aim to process natural images, while few target Thermal
Infrared (TIR) images, which have widespread applications.
When applied to TIR images, conventional inpainting meth-
ods usually generate distorted or blurry content. In this
paper, we propose a novel task—Thermal Infrared Image
Inpainting, which aims to reconstruct missing regions of TIR
images. Crucially, we propose a novel deep-learning-based
model TIR-Fill. We adopt the edge generator to complete the
canny edges of broken TIR images. The completed edges
are projected to the normalization weights and biases to en-
hance edge awareness of the model. In addition, a refinement
network based on gated convolution is employed to improve
TIR image consistency. The experiments demonstrate that
our method outperforms state-of-the-art image inpainting
approaches on FLIR thermal dataset.

Index Terms— Thermal Infrared Image Inpainting, Edge
Awareness, Gated Convolution, State-Of-The-Art.

1. INTRODUCTION

Image inpainting refers to filling missing regions of bro-
ken images, which has excellent usage in image process-
ing. Driven by the advances of Deep Learning (DL), this
technique has progressed significantly in the past few years
[, 2, 3L 41 5 [6, [7]. However, most inpainting methods aim to
reconstruct natural images in the visible spectrum.

Recently, Thermal Infrared (TIR) technology has been in-
creasingly vital in remote sensing [8]], medicine [9], and so
on. Unlike visible-spectrum cameras, TIR cameras can cap-
ture infrared radiation at the wavelength of 2 —1000pm, en-
abling them to detect low-light objects. In this paper, we pro-
pose a novel task—Thermal Infrared Image Inpainting, which
aims to fill the missing regions of broken TIR images. This
technique can contribute to image editing, artifact repair, and
object removal for TIR images, as shown in Fig. [T}
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Fig. 1. Examples of Thermal Infrared Image Inpainting. The
results are generated by our TIR-Fill.

However, conventional DL-based inpainting methods are
not applicable to TIR image inpainting, as they aim to re-
construct natural images but usually create distorted or blurry
structures for TIR images. Compared with natural images,
TIR images have lower chromatic contrast but contain richer
thermal information and sharper edge contours. Therefore,
we propose a novel DL-based model TIR-Fill. We first ex-
tract the canny edges of broken TIR images and build an edge
generator to reconstruct them. The completed edges are in-
serted into our Edge-Aware Guidance (EAG) normalization
in TIR-Fill, which enhances the model awareness of edge in-
formation. A refinement network based on gated convolution
is employed to improve the generated TIR image quality and
consistency. We demonstrate that our method quantitatively
outperforms state-of-the-art image inpainting approaches and
generates visually appealing results on FLIR thermal dataset
(101, as shown in Fig. [I}c).

2. RELATED WORKS

2.1. Image Inpainting

Traditional image inpainting methods include diffusion-based
methods [[11] and patch-based methods [12]]. In recent years,
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Fig. 2. Illustration of our proposed TIR-Fill. (a) The CNN-based edge generator FEy [4]. (b) Our EAG ResBlock. (c) Our
EAG normalization layer. (d) Our TIR image completion network G4, which integrates EAG ResBlocks. (e) Our TIR image

refinement network R,;, based on gated convolution [3].

Deep Learning (DL) has exhibited superior performance in
image inpainting. Conventional DL-based inpainting meth-
ods are based on Convolutional Neural Network (CNN) [1] 2}
[3| 4, [7] and Transformer [, 6]. The majority of these works
are proposed for natural image inpainting.

2.2. Thermal Infrared Image Processing

TIR image processing has attracted extensive research for its
vital and widespread applications. Previous works targeted at
TIR image super-resolution and semantic segmentation
[14]]. Currently, some works aim to tackle TIR image col-
orization, which maps a single-channel grayscale TIR image
to an RGB image [13]]. To our knowledge, no DL-based work
has been proposed for TIR image inpainting.

3. METHODS

3.1. Overview

To perform the task of Thermal Infrared Image Inpainting, we
propose the novel DL-based model TIR-Fill, which is illus-
trated in Fig. [2] It comprises three stages: Edge connection,
TIR image completion, and TIR image refinement. Given the
mask M, the goal of the task is to reconstruct the ground-truth
TIR image Iy based on the input I;, = Iy ® M. The mask
M is a binary matrix, where 0 and 1 denote the hole and valid
pixels, respectively.

3.2. Edge Connection

We first extract the canny edge C;, of the broken image Ij.
The CNN-based edge generator Fy [4] is adopted for the edge
connection, as illustrated in Fig. [2{a). The goal of this stage

is to reconstruct the ground-truth edge C, based on M, Ij,,
and C;,, as formulated below:
c:pred = E(EG(Ma L, Cin) - tO) (1

where tg = 0.5 and £(-) denotes the unit step function: if
t<to,e(t—ty) =0,elsec(t —tg) =1.

The predicted edge Cpreq is recomposed with C;, into
Ciec = Cin + Cpreda @ (1 — M), which will be adopted for
enhancing the edge awareness.

3.3. TIR Image Completion

The TIR image completion network G takes M, I, and Cpec
as inputs to generate IC, as illustrated in Fig. d).

IC = G¢(M, Iin; Crec) (2)

In detail, the intermediate layers of G¢ are our Edge-
Aware Guidance (EAG) ResBlocks, as illustrated in Fig. 2Jb).
Compared with conventional ResNet Block, EAG ResBlock
replaces conventional normalization with our EAG normal-
ization, which inserts the recomposed edge C,., as shown in
Fig. [(c). Inside the EAG normalization layer, Cy. is pro-
jected through convolutional layers into the modulation pa-
rameters 7y and 3. Then, v and 3 are adopted as the normal-
ization weight and bias, respectively, which is formulated as:

Fout = IN(En) © 'Yz,y,c(crec) + Bm,y,c(crec) (3)

where IN denotes the instance normalization, ¥ = 7, 4 ¢(Crec),
and B = By4.c(Crec). It is inspired from SPADE [16] nor-
malization for semantic synthesis. The predicted coarse result
is recomposed into IS, = I, +I€ © (1 — M).
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Fig. 3. Qualitative comparison between our T/R-Fill and the baseline inpainting methods on FLIR dataset.

3.4. TIR Image Refinement

Based on coarse recomposed result IS, a refinement network
Ry is employed to further improve the TIR image quality, as
shown in Fig. 2fe).

= Ry(M,I,) )

The refinement network 2y, consists of stacked gated convo-
lutional layers [3]], which can learn dynamic feature gating for
each channel and each spatial location:

Fouw = U(Wg * -Fm) © ¢(Wf * -Fm) )

where W, and W} denote two different convolutional filters,
o denotes Sigmoid activation, and ¢ denotes Swish activation.
The predicted IR is further recomposed with the input into the
final result IR, = Ij, + IR © (1 — M).

TeC

3.5. Loss Functions

To train Ey, we adopt adversarial training with Patch-GAN
discriminator Dpych [17)] and hinge loss.

£E9 = Eadv(cpred) = _E[Dpatch(cpred)] (6)

EDpdlCh = -D patch (Cgt))]

+E[relu(l + Dpucn(Cprea))]

E[relu(1

)

To train G and Ry, we define a reconstruction loss con-
sisting of #; loss, perceptual loss [18], and style loss [19].

Erec(]:» Igt) - El(Ia Igl + Z ||‘Fl I

+Z 19;(1)

= Fille)llh

(3)
g] gt) || 1

where F; (i € {2,7,12,21,30}) denotes the intermediate fea-

ture map of the i-th layer in the VGG-19 [20], and G, () =

Fi()F;()T (5 € {9,18,27,32}) denotes the Gram matrix

[19]. Based on Ly, the loss functions of G and R, are
formulated as:

L, = Lree(I%, Iy) )

»CR¢ = »Crec (IRy Igt) + »Cadv(IR) (10)

where another Patch-GAN discriminator is implemented,

along with the adversarial loss Loay(I®) = —E[Dpgen(I?)]
and the same discriminator loss as Eq. [7}

4. EXPERIMENTS

4.1. Dataset

We adopt FLIR thermal dataset [10], which consists of 8862
training images and 1366 testing images. For training images,
we randomly crop and resize them to 256 x 256. For testing
images, we resize them to 300 x 375 and crop them from the
center to 256 x 256 for evaluation. The irregular masks with
arbitrary mask ratios provided by Liu et al. [2] are adopted.

4.2. Experimental Settings

We implement TIR-Fill with PyTorch 1.8.1 on one NVIDIA
RTX A6000 GPU with 40G memory. The low and high
thresholds of canny edge detection are set to 80 and 160,
respectively. The learning rates for training Ey, G4, and Ry,
are set to le™3, le™*, and le™4, respectively. The Adam
optimizer with $; = 0.5 and Sz = 0.9 is employed.

4.3. Quantitative Comparison

We report PSNR, SSIM, LPIPS, and FID for quantitative
comparison. The results of our TIR-Fill and the baseline in-



Table 1. Quantitative comparison between our TIR-Fill and
the baseline inpainting methods on FLIR dataset.

Table 2. Quantitative results of the ablation study. The results
are shown as the average scores under all mask ratios.

[Mask Ratio[1-10%[10-20 %[20-30 %[30-40 %[40-50 %[50-60 %

Model [ Stage | PSNR{ [ SSIM{ [ LPIPS] | FID|

GLCIC [1] | 36.61 | 31.02 | 27.53 | 25.11 | 23.04 | 20.28
PConv [2] | 37.87 | 31.79 | 28.56 | 26.50 | 24.90 | 22.85
&| DFv2[3] |37.82 | 3224 | 29.20 | 27.23 | 25.72 | 23.69
Z| EC[H] |38.21] 3225 | 29.01 | 26.92 | 25.31 | 23.21
&| TFill [5] |36.49 | 30.51 | 28.20 | 26.43 | 25.07 | 23.31
(Our-Coarse| 39.36 | 32.96 | 29.45 | 27.13 | 2538 [ 23.17
Our-Refine | 39.65 | 33.48 | 30.06 | 27.79 | 26.06 | 23.82
GLCIC [1]] 0.975 [ 0.932 | 0.872 | 0.808 | 0.740 | 0.653
PConv [2] [0.977 | 0.935 | 0.881 | 0.824 | 0.766 | 0.682
&| DFv2[3] [0.977 | 0.939 | 0.890 | 0.841 | 0.791 | 0.727
% EC[4] [0.979| 0.941 | 0.891 | 0.837 | 0.781 | 0.699
@| TFill [3] |0.974| 0.931 | 0.880 | 0.829 | 0.778 | 0.715
[Our-Coarse| 0.983'| 0.950 | 0.904 | 0.853 | 0.799 [ 0.716
Our-Refine | 0.983 | 0.952 | 0.908 | 0.859 | 0.807 | 0.728
GLCIC [1]1] 0.040 [ 0.099 | 0.172 | 0.238 | 0.302 | 0.364
PConv [2] | 0.029 | 0.074 | 0.127 | 0.177 | 0.228 | 0.290
#| DFv2 [3] [0.041| 0.102 | 0.172 | 0.236 | 0.297 | 0.362
=| EC[l |0.028| 0072 | 0.123 | 0.173 | 0.224 | 0.289
—| TFill [5] |0.038 | 0.094 | 0.154 | 0.208 | 0.263 | 0.322
[Our-Coarse| 0.021| 0.055 | 0.097 | 0.139 | 0.184 | 0.246
Our-Refine | 0.021 | 0.054 | 0.095 | 0.137 | 0.181 | 0.242
GLCIC [1]| 8.41 [ 26.27 | 54.78 | 83.82 | 114.85 [ 145.63
PConv [2] | 5.19 | 13.96 | 26.49 | 41.71 | 60.36 | 85.33
—s| DFv2 [3] | 823 | 26.15 | 54.24 | 85.10 | 115.96 | 141.67
8| ECH] | 478 | 12.39 | 23.10 | 35.83 | 52.02 | 80.48
“| TR 5] | 941 | 2597 | 50.13 | 77.49 | 108.41 | 136.61
(Our-Coarse| 328 | 8.12 | 14.29 | 20.33 | 27.36 | 39.84
Our-Refine | 3.16 | 7.58 | 12.86 | 17.76 | 23.13 | 31.86

1: Higher is better. |: Lower is better. The values marked in red and
blue denote the best and the second best results, respectively.

painting methods are shown in Table[I] Among the baseline
methods, DFv2 (DeepFillv2) performs well in PSNR, and
even outperforms our coarse result under large mask ratios.
TFill is the SOTA method for natural image inpainting, but
it performs poorly for TIR image inpainting. By contrast,
our TIR-Fill achieves the best metrics under all mask ratios.
Obviously, our advantage in FID score is the most significant.

4.4. Qualitative Comparison

The qualitative results are shown in Fig. 3] We can see that
these baseline methods generate poor inpainting results for
TIR images. DFv2 and TFill generate blurry content, while
GLCIC and PConv create distorted structures. EC (Edge Con-
nector), which also utilizes edge information, can generate
somewhat good results but with a few damaged details. By
contrast, our TIR-Fill generates delicate structures, including
pedestrians, trees, and cars. The comparison illustrates that
our model can generate visually appealing inpainting results
for TIR images. Therefore, the previous baseline methods

w/o EAG | Coarse | 29.24 | 0.844 [ 0.135 [ 25.61
w/o EAG | Refine | 29.73 | 0.849 | 0.133 | 21.42
" TIR-Fill | Coarse | 2957 | 0.867 | 0.124 | 18.87
TIR-Fill | Refine | 30.14 | 0.873 | 0.122 | 16.06

w/o EAG - Coarse

TIR-Fill - Refine

W/o EAG - Refine

Fig. 4. Qualitative results of the ablation study and visualiza-
tion of the reconstructed canny edges.

are not applicable to TIR image inpainting, which is a worth-
discussing task requiring the specifically designed method.

4.5. Ablation Study

We conduct the ablation study to illustrate the effectiveness
of our EAG normalization. The variant “w/o EAG” denotes
another TIR-Fill which replaces the EAG normalization with
conventional instance normalization. The results shown in
Table[2]demonstrate that EAG normalization dramatically im-
proves the quantitative performance, especially the FID score.
In Fig. @] we aim to remove the pedestrians on the road. The
visualization of the reconstructed edge C,.. shows that the
edges of the pedestrians are naturally removed and completed.
The qualitative comparison between the variant and the com-
plete TIR-Fill demonstrates that TIR-Fill can generate more
delicate structures.

5. CONCLUSION

In this work, we propose a novel image processing task—
Thermal Infrared Image Inpainting, which aims to reconstruct
missing regions of TIR images. In addition, we propose an
effective model TIR-Fill to deal with the novel task, which
integrates our EAG normalization for enhancing edge aware-
ness. The experiments demonstrate that our TIR-Fill outper-
forms the baseline inpainting methods. Its visually appealing
inpainted results demonstrate its ability in TIR image edit-



ing. The ablation study illustrates that EAG normalization
performs better than conventional normalization. In the fu-
ture, we expect the worth-discussing task will attract exten-
sive research and contribute to widespread applications.
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