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ABSTRACT

Automatic singing evaluation independent of reference melody
is a challenging task due to its subjective and multi-dimensional na-
ture. As an essential attribute of singing voices, vocal timbre has a
non-negligible effect and influence on human perception of singing
quality. However, no research has been done to include timbre in-
formation explicitly in singing evaluation models. In this paper, a
data-driven model TG-Critic is proposed to introduce timbre embed-
dings as one of the model inputs to guide the evaluation of singing
quality. The trunk structure of TG-Critic is designed as a multi-scale
network to summarize the contextual information from constant-Q
transform features in a high-resolution way. Furthermore, an auto-
matic annotation method is designed to construct a large three-class
singing evaluation dataset with low human-effort. The experimen-
tal results show that the proposed model outperforms the existing
state-of-the-art models in most cases.

Index Terms— Singing evaluation, timbre embedding, high-
resolution network

1. INTRODUCTION

Automatic singing evaluation aims to assess the quality of singing
performances without the participation of music experts, thus reduc-
ing labor costs. The applications of the task include the distribution
of singing content on the Internet and the discovery of musicians.
With the popularity of online music services and karaoke singing ap-
plications, there is a growing demand for more advanced evaluation
systems for singing voices, making automatic singing evaluation a
hot research topic in recent years.

Because singing evaluation by humans is empirically based and
listener dependent, it is difficult to use automatic systems in substi-
tution of human experts. However, previous studies have shown that
humans rely more on some common, objective features than sub-
jective preferences when judging the quality of singing [1]. These
features such as intonation accuracy, tonal stability, and rhythm con-
sistency can be detected automatically, which makes computational
techniques feasible for this task. Also, the criteria of singing evalua-
tion are inevitably multi-dimensional. A reliable singing evaluation
system can be established only by observing objective metrics of a
singing work in a similar way as music experts do.

Depending on whether a reference melody is required, the ex-
isting automatic singing evaluation systems can be roughly divided
into two types: reference-dependent approaches and reference-
independent ones. A typical reference-dependent approach needs
one ideal reference, such as an excellent singing recording or the
correct melodic line. The more similar the singing is to the reference,
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the higher the score or the ranking level [2]. Most studies focus on
pitch accuracy [3, 4, 5], while some studies design hand-crafted au-
dio features to obtain scores from other dimensions such as dynamic
[2, 6], rhythm [2, 6], voice quality [6], timbre brightness [7, 8],
enthusiasm [9], vibrato [6], tremolo [10], etc. There are also works
using metric learning to map singing voices to embeddings for sim-
ilarity comparison [11, 12]. The advantages of reference-dependent
approaches are high interpretability and low complexity, while the
disadvantages are as below: a) Manual preparation/proofreading of
references is needed; b) It encourages the imitation of references
rather than personalized interpretation.

For human experts, studies have shown that even if the melody is
new to them, they can make a highly consistent evaluation [1], indi-
cating the feasibility of the reference-independent approaches. The
traditional reference-independent singing evaluation mainly focused
on intonation characteristics [13, 14]. Since Zhang et al. [15] pro-
posed a convolutional neural network (CNN) based model trained
on two-class data, the data-driven methods have been introduced
into this field. Gupta et al. [16] adopted a convolutional recur-
rent neural network (CRNN) framework, where the inputs are Mel-
spectrograms along with pitch histograms. Huang et al. [17] further
compared Mel-spectrogram with different mid-level input features
such as constant-Q transform (CQT) and Chromagram. Using a sim-
ilar CRNN structure, Li et al. [18] trained multi-task models for both
pitch and overall scores. Gupta et al. [19] transplanted the idea of
pitch histogram to rhythm histogram for rhythm evaluation. The
reference-independent methods are truly end-to-end, which helps to
further reduce the need for human-effort and expand application sce-
narios.

Although great performance has been achieved by previous stud-
ies, we notice that so far there is no such method that involves timbre
information explicitly in the model. As previous studies [4, 8, 20]
have shown, the vocal timbre is an important attribute that affects
human perception of singing. But unlike other attributes such as in-
tonation and rhythm, timbre is a multifarious set of abstract sensory
attributes [21] and is difficult to be extracted by models. Therefore,
we believe it is helpful to involve timbre information explicitly rather
than to have the model learn the features from scratch.

In this paper, we explore adding timbre embeddings as the model
inputs and propose a timbre-guided singing evaluation model named
TG-Critic. The trunk structure of TG-Critic is designed as a multi-
scale CNN-based network to summarize the contextual information
from the input CQT in a high-resolution way. In addition to the CQT,
TG-Critic also takes a vector involving timbre information derived
from the audio using a timbre embedding model. Furthermore, to
alleviate the problem of insufficient data, we propose an iterative au-
tomatic annotation method and construct a large singing dataset YJ-
16K. Experimental results show that by including timbre informa-
tion explicitly, the model achieves higher accuracy and outperforms
existing state-of-the-art methods.
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Fig. 1. The overall architecture of TG-Critic. ‘c’ denotes the channel number of the convolutional layer, while ‘p’ denotes the pooling length
along the frequency axis. All the 2D convolutional layers use the kernel size of 3 × 3, while the 1D convolutional layer’s kernel length is 5.
All the layers except the last dense layer are followed by the ELU activation function.

2. APPROACH

The overall architecture of TG-Critic is shown in Fig. 1. It has two
branches: 1) a High-Resolution Branch mainly composed of con-
volutional layers processing the input CQT into high-level semantic
representations for singing evaluation; 2) and a Timbre Branch pro-
cessing the timbre vector derived by a timbre embedding model. In
this section, we first introduce the timbre embedding method and
Timbre Branch. Then, the structure of High-Resolution Branch is
detailed. Finally, we describe the construction of the singing dataset
YJ-16K.

2.1. Timbre Embedding & Timbre Branch

Timbre allows us to distinguish the difference between the two
voices besides pitch, loudness, and duration [22]. To generate tim-
bre representations that we can input into a deep learning model, we
adopt the embedding model CROSS proposed by Lee and Nam [23]
and use the pretrained model1 in experiments.

CROSS is a metric learning-based embedding model designed
for singer-relevant tasks, especially singer identification. A previous
study has proved that singer identity mainly consists of two parts:
timbre and singing style [24]. Therefore, the output vector should
include enough information to distinguish vocal timbre and we be-
lieve it is suitable for timbre embedding.

The input of CROSS is a three-second long audio clip while the
output is an embedding vector of 256 dimensions. In experiments,
we first slice each audio into segments of three seconds with the step
size as one second and then derive the embedding vectors for each
segment. Therefore, for audio with a length of t seconds, a “tim-
bregram” with a size of (t− 2, 256) will be obtained, which depicts
the variation of vocal timbre in the audio. To alleviate the influence
of loudness, we perform min-max normalization on the timbregram.
Finally, the mean and variance along the time axis are calculated and
then concatenated as a vector of length 512, which we used as the
input of TG-Critic. We excluded invalid timbre embeddings (singing
voice frames are less than 70%) in the calculation.

To prove that information related to the singing quality is in-
volved in the derived vectors, we randomly choose some singing
samples with three-level quality annotations “Awesome”, “Mediocre”
and “Inferior”. Through the method mentioned above, from each

1https://github.com/kyungyunlee/mono2mixed-singer
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Fig. 2. The t-SNE visualization of the timbre vectors derived from
singing samples with different qualities. M.S. and F.S. denote Male
Singers and Female Singers respectively.

audio, a 512-dimension timbre vector can be obtained. Then these
timbre vectors are visualized using t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [25], as shown in Fig. 2. It shows that for
male and female singing respectively, vectors of the same quality
level are closer to each other than those of different levels. Fur-
thermore, in an informal experiment, we use only these vectors to
train a multilayer perceptron (MLP) classification model and get
an accuracy of 62%. These results indicate that the timbre vectors
contain information helpful for automatic singing evaluation.

As shown in Fig. 1, Timbre Branch with two dense layers is
designed to further process the 512-dimension timbre vectors into
representations suitable for the fusion with the outputs of High-
Resolution Branch. Finally, we obtain an output vector of 64
dimensions.

2.2. Structure of High-Resolution Branch

We use CQT as the input mid-level feature for High-Resolution
Branch because previous studies [17, 18, 19] have proved its ef-
fectiveness. To extract features, the original audio data is first
resampled to 16 kHz. For CQT computation, we set the hop size to
512. For each frame, there are 96 bins and each octave is covered
by 24 bins. The minimum frequency is set to E2 to better match the
pitch range of singing voices. For training and evaluation, we set the
input length of CQT as 256 frames (roughly 8 seconds). Note that
the input audio of TG-Critic can be of arbitrary length.



Fig. 3. The iterative automatic annotation of YJ-16K dataset.

For singing evaluation, long-term dependencies and local de-
tails are both indispensable. As many studies [15, 17, 18] did, we
use a CNN-based structure as the backbone of our model to bet-
ter detect local patterns. However, a few convolution layers can-
not model long-distance dependence. On the other hand, the over-
stacking of convolutional layers may lead to excessive parameters.
Downsampling operations are usually introduced to expand the con-
text range that convolution kernels can capture. But downsampling
also causes a loss of detailed information. Besides, some studies
[17, 18] adopted the idea of CRNN, applying a recurrent layer after
CNN to capture long-term dependencies. However, the involvement
of RNN undoubtedly reduces the model’s efficiency.

Inspired by the success of HRNet [26] designed for computer vi-
sion tasks, we introduce a similar multi-scale structure into the pro-
posed model. In such a structure, downsampling is performed on the
input features to obtain low-resolution representations to facilitate
the extraction of global information. After the process of convolu-
tional layers, the low-resolution features are upsampled and merged
with high-resolution features. The procedure of downsampling and
upsampling is repeated several times, and it helps aggregate contex-
tual information from different scales. Because of the existence of
high-resolution features, the detailed patterns are not degraded dur-
ing the process. Specifically, the input CQT of T frames is first
downsampled to T/2 and T/4 over the time axis (we assume that T
is an integral multiple of 4). These features are then processed by
3×3 convolutional layers. After average pooling over the frequency
axis to summarize frequency bands, the features are rescaled and
fused. Average pooling and nearest neighbor interpolation are used
to perform rescaling. For the fusion operation, the concatenation is
followed by a 1×1 convolutional layer to exchange information and
adjust the channel number. Meanwhile, on the frequency axis the
features are gradually downsampled. After three multi-scale pro-
cesses, the features are fused again. We reshape the obtained feature
to (T, 768) and use a 1D convolutional layer to adjust the channel
numbers to 64. After global average pooling, a vector of 64 dimen-
sions is obtained.

After obtaining the output vectors from the two branches, we
concatenate them and send the fused vector into a dense layer with
exponential linear unit (ELU) activation [27] to exchange informa-
tion. Finally, we apply a dense layer with softmax activation to pro-
duce the classification result for singing quality.

2.3. Construction of YJ-16K Dataset

We construct a three-class singing dataset named YJ-16K. The
dataset contains 32,623 users’ unaccompanied singing pieces from
YinJie2. We collect metadata from the application including scoring

2https://k.163.com/ is a karaoke application.

YJ-16K Total A M I M.S. F.S.
YJ-900 test 894 296 302 296 430 464

YJ-AN
total 15000 5000 5000 5000 7683 7317
train 14100 4700 4700 4700 7203 6897
valid 900 300 300 300 480 420

Table 1. The number of samples in YJ-16K dataset. M.S. denotes
Male Singers while F.S. denotes Female Singers.

data such as intonation scores, rhythm scores, etc., and user behavior
data such as the numbers of likes and comments for each song. The
dataset contains a variety of singing from poor to professional. We
aim to label these samples into three classes: Awesome (A) - works
with excellent execution and impressive voice quality; Mediocre
(M) - works with good intonation, but with ordinary expressiveness;
Inferior (I) - works with weak intonation or poor expressiveness.

To reduce labor costs of labeling, we train models for automatic
annotation. First, a subset of 894 samples named YJ-900 is sep-
arated and manually annotated by music experts. Using YJ-900’s
metadata and manual labels, we train two random forest (RF) binary
classification models to separate Awesome and Inferior samples re-
spectively. Then, the RF models are used to annotate the rest of the
original dataset, called YJ-AN. However, these automatic labels are
not reliable enough, because the metadata we obtained was affected
by various external factors. For example, covers of hit songs often
tend to get higher user ratings.

To improve the reliability of annotations, we design an “itera-
tive automatic annotation” method as shown in Fig. 3. We first train
the TG-Critic model using the audio signals and automatic labels of
YJ-AN. By this model, a predicted “evaluation curve” is obtained
for each audio sample of YJ-900 (as TG-Critic’s inputs are 8-second
segments), which is then used as a part of the inputs of the RF Mod-
els in the next iteration. The iteration repeates four times, and the
detail of the finally obtained dataset is shown in Table 1. The effects
of iterative automatic annotation can be seen in Section 3.3.

3. EVALUATION

3.1. Ablation Studies

To demonstrate how much the timbre vectors contribute to the
model, we compare the performance of the models with and without
Timbre Branch. For the structure with Timbre Branch (the proposed
TG-Critic), two models are trained by different training strategies: a)
TG-Critic-1S: The High-Resolution Branch and the Timbre-Branch
are trained together in one step; b) TG-Critic-2S: A two-step training
strategy is applied where the High-Resolution Branch is first trained
and frozen, and then the Timbre Branch is trained using smaller
learning rate and fewer epochs. We also trained a model CQT-Only
with only High-Resolution Branch and CQT input for comparison.
Among the models mentioned above, TG-Critic-1S and CQT-Only
are both trained by 200 epochs with a learning rate of 0.0001. TG-
Critic-2S is trained 100 epochs for each step, and the learning rate is
set as 0.0001 in the first step and 0.00005 in the second step. For all
three models, the Adam optimizer is applied in training to minimize
categorical cross-entropy, and one epoch consists of 500 batches
where the batch size is set as 32.

As shown in Table 2, the model without Timbre Branch per-
forms worse than the models with Timbre Branch. Among the three
classes, CQT-Only shows the highest recall and the lowest precision



Model Precision (%) Recall (%) Acc.
(%)A M I A M I

TG-Critic-1S 83.5 71.6 84.0 90.5 69.2 79.7 79.8
TG-Critic-2S 87.2 73.6 86.7 89.9 75.5 81.8 82.3

CQT-Only 84.3 69.8 79.5 88.9 63.6 82.4 78.2
TG-Simple 82.1 68.4 88.7 92.9 72.5 71.6 79.0

Table 2. Results of ablation studies on YJ-900 dataset.

Model Param. YJ-900 PESnQ-DS NUS48E
Acc. Acc. Corr. Acc. Corr.

Kuaishou [15] 1.97M 68.3 85.0 0.858 68.8 0.497
NUS20 [17] 0.72M 76.3 85.0 0.930 68.8 0.552
NUS21 [18] 1.45M 78.4 85.0 0.925 72.9 0.548
TG-Critic-1S 0.82M 79.8 80.0 0.927 72.9 0.671
TG-Critic-2S 82.3 95.0 0.933 77.1 0.631

Table 3. Results of the proposed and baseline models on YJ-900,
PESnQ-DS, NUS48E datasets. The accuracy values are percentiles.
(Acc. = Accuracy, Corr. = Pearson Correlation Coefficient.)

on the inferior singings, indicating the model without explicit timbre
information is inclined to underestimate the singing quality. For the
two models with Timbre Branch, TG-Critic-2S using the two-step
training strategy presents a significant enhancement in performance.
We believe this is mainly because Timbre Branch is a much simpler
structure than High-Resolution Branch, and it is difficult for the two
branches to converge simultaneously in one-step training.

Furthermore, to evaluate the idea of using a “high-resolution”
network, we remove the High-Resolution Branch in the model
named TG-Simple. Instead, a simple CNN structure stacked with
three 3 × 3 convolutional layers is used. We carefully adjust the
filter numbers in the layers to remain a similar number of param-
eters, and the same training strategy as TG-Critic-2S is used to
ensure the model’s best performance. As shown in Table 2, the
accuracy decreases by 3.3% compared to TG-Critic-2S, proving that
the high-resolution structure helps to produce better representations
for singing evaluation.

3.2. Comparison with Previous Works

To compare with previous works, we reproduce three baseline mod-
els: Kuaishou [15] (Bi-DenseNet-27 model), NUS20 [17] (CPH-
CRNN model), and NUS21 [18] (Framework 3). All three models
are reference-independent singing evaluation models based on deep
learning. We follow the hyperparameters described in the papers to
ensure the models’ performances on our training dataset YJ-AN.

In addition to YJ-900, we use two public datasets PESnQ-DS [6]
and NUS48E [28] for tests. Recordings of PESnQ-DS (two songs,
each performed by 10 singers) cover singing ability from poor to
professional and they are annotated with overall scores, pitch scores,
and rhythm scores. NUS48E contains 48 samples (20 songs) per-
formed by 12 singers between mediocre and good level, without
quality annotations. Besides, three of the PESnQ-DS recordings are
from the NUS48E dataset.

To collect subjective ratings on NUS48E, we recruit 12 human
judges to give an overall singing quality score out of 5 to each record-
ing compared to the reference singing samples. We also conduct the
same rating procedure on PESnQ-DS and find our scores are highly
consistent with the overall scores provided by the authors, achieving
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Fig. 4. Performance of models trained on datasets of different anno-
tation iterations.

the Pearson correlation coefficient (PCC) of 0.91, which proves the
reliability of our annotations.

Considering the singers’ singing ability of NUS48E is from
mediocre to good level, we divide the NUS48E samples into classes
A and M using a threshold (resulting in 29 as A and 19 as M). On
PESnQ-DS, we calculate the average scores of all annotators (12 by
us and 5 by [6]) for comparison, and divide samples into classes A,
M, and I by two thresholds (resulting in 8 as A, 7 as M, and 5 as I).

The experimental results are shown in Table 3. Compared with
other models, TG-Critic-2S achieves the highest accuracy for all
three datasets. To make a comprehensive comparison, we obtain a
weighted score for each prediction using the output probability dis-
tribution. We annotate predicted probabilities for class A, M, and I
be PA, PM , and PI respectively. Then the weighted score is calcu-
lated as: PA×1.0+PM ×0.5+PI×0.0, ranging within [0, 1]. The
PCCs between the weighted scores and the ground truth are shown
in Table 3. The high correlations indicate that these scores from
probability distribution are capable of measuring the singing qual-
ity. TG-Critic-1S and TG-Critic-2S show better performance than
the baseline models, clearly confirming the effectiveness and robust-
ness of our proposed model3.

3.3. Effects of Iterative Automatic Annotation

To demonstrate the effects of iterative automatic annotation, we train
models with datasets after each annotation iteration using the two-
step training strategy mentioned in Section 3.1. Then, the models
are evaluated on the manually annotated YJ-900.

As shown in Fig. 4, the model’s performance improves signifi-
cantly after each iteration, especially for the first three ones, which
indicates that the annotations are increasingly closer to human as-
sessment. The results prove that the iterative annotation process is
effective in producing reliable annotations.

4. CONCLUSION

In this paper, we have proposed TG-Critic, a timbre-guided singing
evaluation model independent of the reference melody. The pro-
posed model includes timbre information explicitly by using timbre
embedding as one of the model inputs. A multi-scale structure is
introduced to process the CQT features in a high-resolution way.
We also construct a large singing dataset YJ-16K with annotations
labeled by an iterative automatic annotation method. Experimental
results show the proposed model outperforms the existing state-of-
the-art models in most cases.

3The detail annotations for PESnQ-DS and NUS48E and further experi-
mental results are available at https://github.com/YuejieGao/TG-CRITIC
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