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ABSTRACT

Code-switching speech refers to a means of expression by mix-
ing two or more languages within a single utterance. Automatic
Speech Recognition (ASR) with End-to-End (E2E) modeling for
such speech can be a challenging task due to the lack of data. In
this study, we investigate text generation and injection for improving
the performance of an industry commonly-used streaming model,
Transformer-Transducer (T-T), in Mandarin-English code-switching
speech recognition. We first propose a strategy to generate code-
switching text data and then investigate injecting generated text
into T-T model explicitly by Text-To-Speech (TTS) conversion or
implicitly by tying speech and text latent spaces. Experimental
results on the T-T model trained with a dataset containing 1,800
hours of real Mandarin-English code-switched speech show that
our approaches to inject generated code-switching text significantly
boost the performance of T-T models, i.e., 16% relative Token-based
Error Rate (TER) reduction averaged on three evaluation sets, and
the approach of tying speech and text latent spaces is superior to
that of TTS conversion on the evaluation set which contains more
homogeneous data with the training set.

Index Terms— code-switching ASR, cross-modality learning,
transformer-transducer, TTS conversion

1. INTRODUCTION

Code-switching (CS) is a linguistic phenomenon where different lan-
guages are alternated and spoken within the same utterance or con-
text. Building a code-switching ASR system requires handling un-
predictably switching languages within a single utterance. There can
be some code-switching-specific variations on the boundary between
the two languages, which are essential for ASR model to capture.
However, the code-switching data is always insufficient to train a
decent model. A considerable number of works have been proposed
in acoustic feature extraction, model architecture design, and other
prospects to improve code-switching ASR.

The less requirement of linguistic knowledge in building end-to-
end (E2E) ASR has accelerated the development of code-switching
ASR recently. The most popular E2E model architecture like Con-
nectionist Temporal Classification (CTC), attention-based sequence-
to-sequence model, and transducer have been investigated for code-
switching ASR [1–7]. In these works [1, 2, 4], the joint CTC-
attention structure with language identification (LID) was con-
structed in a multi-task learning (MTL) framework. It exploits the

†Work is done by the first author during internship at Microsoft.

advantages of both the attention and CTC while the additional LID
module enables the system to handle switching languages. In the
most recent works, multiple transformer-based structures have been
employed to consider the property of code-switching. A bi-encoder
transformer network-based Mixture of Experts (MoE) architec-
ture has been proposed to capture language-specific information
with a gating function performed as a language identifier [8]. A
multi-encoder-decoder (MED) Transformer architecture was used to
capture the individual language attributes with multiple language-
specific encoders and fuse them with multi-head attention in a
decoder [9]. In addition, they pre-trained all of the language-
specific modules by using large monolingual speech corpora. Self-
supervised pretraining with multi-lingual unlabeled data without
code-switching speech has also been shown effective to improve the
performance of Mandarin-English code-switching ASR [10].

Transducer-based ASR model is very attractive in the industry
since it provides a natural way for streaming. However, it is not
so straightforward to utilize unspoken text data except converting to
synthesized speech or the features from TTS with a high computa-
tional cost [11, 12]. There is no attention mechanism between the
encoder and the decoder. Although the prediction module plays as
a Language Model (LM), it is different from the conventional LM
due to the blank token [13] that makes it harder to leverage external
LM. In this paper, we mainly focus on the Transformer-Transducer
(T-T) architecture [14] and investigate cross-modality learning meth-
ods to leverage text-only data for improving the performance of the
Mandarin-English code-switching ASR system.

2. RELATED WORK

T-T models for code-switching ASR has not been intensively in-
vestigated so far. A recent work [15] has demonstrated the im-
provements over the previous transducer model by leveraging several
strategies including CTC and LM joint training, LID aware masked
training, and multi-label/multi-audio encoder framework for addi-
tional monolingual corpora. The effectiveness of these strategies
was presented only on a T-T model trained with a small-scale cor-
pus named SEAME that contains about 100 hours of code-switching
speech [16]. The generalization capability of these strategies needs
to be further exploited on an industry-scale corpus.

There are several works on unifying speech-text representation
learning. Speech and text latent spaces were aligned via the shared
layers from speech encoder and text encoder [17–22], modality
alignment loss [19] like predicting whether a pair of speech and
text is positive or negative, cross-modality learning loss, i.e., Mean
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Fig. 1: Code-switching data generation.

Squared Error (MSE) between the embeddings from speech encoder
and text encoder [21], and cross-modality contrastive learning [23].
These approaches can make speech representations learn more con-
textual information from text representations. To the best of our
knowledge, these cross-modality learning methods have not been
explored in the scenario of code-switching T-T based ASR.

3. METHODS

In this study, we build a Mandarin-English code-switching ASR sys-
tem based on T-T structure. To address the lack of large-scale code-
switching data in T-T modeling, we first generate code-switching
text data and then leverage generated text into T-T modeling.

3.1. Code-switching Text Data Generation

The code-switching text data generation is illustrated in Fig. 1. First,
parallel Mandarin and English sentence pairs are generated using a
machine translation model. A word alignment procedure is then per-
formed on the parallel sentence pairs to align the words with the
same meanings but in different languages. Word alignment is con-
ducted only on verbs and nouns. Finally, these verb and noun words
are replaced across languages based on word frequency. English
words occupy a percentage of about 10% in the generated code-
switching text data that meets the statistics of raw training data we
collected in this study.

3.2. Code-switching Text Data Injection

We explore two approaches to inject code-switching text data into T-
T modeling, as shown in Fig. 2, where illustrates a) augment paired
speech-text training data by adding TTS converted data; and b) di-
rectly add text-only data by cross-modality learning.

3.2.1. Text-to-speech (TTS) Conversion

We employ a multilingual TTS system to convert the generated code-
switching text to speech. The system is based on Neural TTS that can
mimic 18,000 different voices, so the generated tones of the speech
are in a vast diversity. Text normalization is used in pre-processing,
and potential low-quality audios are filtered out after generation. In
addition, various reverberations and background noises are added to
the speech to simulate different scenarios. The real paired speech-
text training data, spaired, is augmented with TTS converted data,
sTTS , to train a T-T model as shown in Fig. 2 (a).

3.2.2. Cross-modality Learning

We investigate cross-modality learning to tie speech and text latent
spaces and then inject text data into the tied space directly. As shown

in Fig. 2 (b), the text sequences can be derived from both paired
speech-text data, tpaired, and text-only data, tonly .

The Speech Encoder is a stack of Transformer layers, which
takes the speech sequence as its input and produce a speech rep-
resentation Es. The text sequence is first converted to a phoneme
sequence and then fed into the Embedding Extractor to get the em-
beddings. The embedding dimension is the same as that of speech
representation Es. We denote the sequence length as lt, and the em-
bedding dimension as dim. The extracted text/phoneme embedding
Embt belongs to Rlt×dim. We upsample it to the length of Es

which has a much larger number of embeddings in terms of frames.
The upsampler repeats the embeddings across the time domain ac-
cording to the phoneme length {lp} provided by the force alignment
result. The upsampled text/phoneme embeddings are afterward in-
putted into the Smoother, which is also a stack of Transformer layers,
and finally the text representation Et is calculated. Note that Et and
Es are of the same length.

We align Et and Es into the same latent space by cross-modality
learning loss. The details will be introduced in the next subsection.
The Shared Encoder takes Et and Es separately as input, and the
subsequent forwarding steps are similar to those in T-T. We apply a
Transducer loss denoted as Ls for Es. Another Transducer loss Lt

is applied to the decoding result from Et. The loss function is shown
in equations 3 and 4. In the following equations, the forward calcu-
lations of Speech Encoder, Embedding Extractor and Smoother are
denoted as θs, θemb and θsmooth respectively, and the resampling
process is denoted as Resample. µ in the loss function is a hyper-
parameter to control the overall weight of the extra losses and the
vanilla speech Transducer loss Ls.

Es = θs(s),Embt = θemb(t) (1)

Et = θsmooth(Resample(Embt, {lp})) (2)

Lpaired = µLs + (LCM + Lt) (3)

Ls = LT−T(Es, t),Lt = LT−T(Et, t) (4)

Two cross-modality loss functions,LCM , and one learning strat-
egy are explored in this study.

1. MSE
MSE loss is a strict criterion that forces the speech represen-
tation es and text representation et to be identical.

2. BiInfoNCE
Apart from MSE loss, other soft criteria are worth testing,
like InfoNCE loss that lifts the lower bound of the mutual
information of the two representations [24]. Here we employ
BiInfoNCE loss illustrated as equation 5 and 6, where f is
cosine similarity.

L = LN(Et,Es) + LN(Es,Et) (5)

LN(X,Y ) = −E
X

[
log

f (xi+k, yi)∑
xj∈X f (xj , yi)

]
, yi ∈ Y (6)

3. Modality swap
In this approach, no cross-modality loss is employed. Instead,
by swapping samples from es and et, during the optimization
procedure, the latent space of es and et could be tied together.

For the generated text-only input, tonly , similar to the text
modality, tpaired, in the paired speech and text input, the Text En-
coder extracts embedding embt from the text sequence, embt is
upsampled and smoothed into text representation et, and the Shared
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Fig. 2: Code-switching text data injection by a) TTS conversion and b) cross-modality learning.

Encoder takes et as input and the following modules complete
the Transducer computation. The backward process traverses the
decoder, shared encoder, and text encoder, which means Speech
Encoder will not be optimized. The loss function for text-only input
is the Transducer loss Lt applied to the decoding result from et, as
is represented in equation 7.

Ltext = Lt = LT−T(Et, t) (7)

4. EXPERIMENTS

4.1. Data and Systems

We use a corpus containing 1.8k (one thousand eight hundred) hours
of real intra-sentential code-switching data as paired speech and text
input, already augmented by adding noise and speed perturbation.
For the generated text-only input, to line up the acoustic and the
linguistic information, we use the phoneme sequences and upsam-
ple them according to the duration model of the TTS system. The
TTS-generated code-switching corpus contains 14k hours of speech.
Three systems: 1) baseline: T-T was trained with 1.8k hours of real
speech; 2) topline: T-T was trained with real and TTS converted
speech as shown in Fig.2 (a); 3) CM: cross-modality learning is
used in T-T modeling as shown in Fig.2 (b), are built and tested
on three internal code-switching evaluation sets in the scenarios of
online meeting, language teaching and general dictation with a total
duration of 60 hours. The third set is homogeneous to part of the
training data and the rest two sets consist of out-of-domain data.

4.2. Model Configuration and Training

For the baseline and topline systems, we use a plain Transformer-
Transducer configuration similar to the original implementation,
which has 18 layers in the audio encoder and 2 layers in the de-
coder. For the cross-modality learning systems, to keep consistency,
the Speech Encoder contains 6 Transformer layers, and the Shared
Encoder has 12 Transformer layers. The Embedding Extractor is a
stack of 4 Transformer layers, and the Smoother has 2 Transformer
layers. The input feature or embedding size is 512. Each attention
sub-layer has 8 heads without dropout, and the dropout ratio of all
other layers is 0.1. The learning rate schedule is warmed up to 2e−4
in the first 50k steps and then decays exponentially. We train all
models using AdamW optimizer. The text encoder is only involved
in the training stage and discarded during inference.

In the cross-modality (CM) learning systems, paired speech-text
and text-only inputs are not mixed in a single batch. Instead, each
batch is composed of two mini-batches, one of which contains the
paired speech and text samples, and the other consists of text-only

samples. The gradients are accumulated within one single batch. Ev-
ery time the model finishes two mini-batches in one batch, the gra-
dients are back-propagated and the model parameters are updated.

4.3. Metrics

We measure the performance of our systems in terms of the overall
token error rate (TER). In order to have a detailed analysis, we also
calculate the word error rate (WER) on the English part and the char-
acter error rate (CER) on the Mandarin part of the code-switching
data, respectively.

5. RESULTS

5.1. Cross-modality Learning and Generated Text

The overall results achieved by baseline, topline, and CM systems
are reported in Table 1.

System CS-All CS-Man CS-Eng

baseline 15.6 11.05 40.05
CM MSE, µ = 2 14.2 10.06 36.78

CM MSE, µ = 2.33 13.2 9.13 35.4
CM MSE, µ = 3 15.0 10.92 37.35
CM MSE, µ = 5 15.4 11.2 37.91

topline 13.1 10.23 28.39

Table 1: Overall TER%, CER% and WER% on three code-
switching evaluation sets. CS-Man and CS-Eng represent the Man-
darin and English parts, respectively.

Table 1 shows that adding generated text or synthesized speech
into the training procedure significantly boosts the performance of
the T-T over the baseline by a relative 16% of WER reduction (when
µ = 2.33). The overall performance of the cross-modality learning
model is on a par with that of the topline model. It demonstrates that
generating code-switching data is a promising approach to improve
the performance of T-T based code-switching ASR. Furthermore, the
synthesized speech is different from natural CS speech and may con-
tain TTS-specific artifacts that hurts the model performance on some
testing samples. Cross-modality learning approaches only utilize
the generated text without actual speech conversion and may have a
chance to reduce the impacts of artifacts. As English words occupy a
percentage of about 10%, the code-switching boundary patterns are
vital to its recognition performance. The lower English WER com-
pared to baseline suggests that the code-switching boundary patterns



System Set 1 Set 2 Set 3
CS-All CS-Man CS-Eng CS-All CS-Man CS-Eng CS-All CS-Man CS-Eng

baseline 13.22 12.54 15.81 20.78 12.8 66.78 5.91 4.36 21.62
CM MSE, µ = 2.33 11.52 10.68 14.68 17.21 10.18 57.72 5.71 4.11 21.99

topline 12.1 12.15 11.93 15.86 10.5 46.8 7.33 6.6 14.7

Table 2: A breakdown of TER%, CER% and WER% on three code-switching test sets from baseline, topline and cross-modality learning
systems. Set 3 is the homogeneous set.

System Set 1 Set 2 Set 3
CS-All CS-Man CS-Eng CS-All CS-Man CS-Eng CS-All CS-Man CS-Eng

CM MSE, µ = 2.33 11.52 10.68 14.68 17.21 10.18 57.72 5.71 4.11 21.99
Swap rate 0.2 12.77 12.06 15.45 20.25 12.68 63.93 4.83 3.3 20.34
BiInfoNCE 12.67 17.87 15.72 20.05 12.75 62.12 4.96 3.46 20.2

Table 4: A breakdown of TER%, CER% and WER% on three code-switching test sets by using different cross-modality learning mechanics.

can be captured in the generated text by using cross-modality meth-
ods. We attempted to remove LCM in equation 3. The resultant
performance shows only a marginal gain over the baseline system.

The breakdown results of the three sets are given in Table 2, in
which it shows that the cross-modality learning system can outper-
form both the baseline and topline systems on the homogeneous set.

It is noteworthy that all the systems report much higher WER
on the English part of CS speech compared with the CER on the
Mandarin part. The inconsistent performance in different languages
results from the imbalance of English and Mandarin in both train-
ing and test data sets. As mentioned in 3.1, English words occupy
a small proportion of the CS speech and are difficult for the model
to recall. In some typical error cases, the English words in the ut-
terances are misrecognized as Chinese characters with identical or
similar pronunciation. These results reflect that detecting the bound-
ary between the languages is still a hard task.

The improvement on the Mandarin part is more responsible for
the overall performance gain of the CM systems. Comparing the CM
system with the baseline, the benefits from combining data of extra
modality into training are mainly seen in Mandarin. The topline sys-
tem is inferior to the CM systems in the aspect of Mandarin part but
reports the lowest WER of English part. This can be interpreted as
the other side of the coin. The cross-modality learning procedure
takes more advantage of the density of Mandarin, in contrast to the
sparsity of English. Since Mandarin takes up the majority of the
generated text and the real code-switching speech, if only the Man-
darin parts from the two modalities were aligned, a large part of the
cross-modality learning would be well conducted. In other words,
cross-modality learning is more focused on the Mandarin part, but
may ignore the uncommon patterns to some extent. This can lead to
a less optimal result for the model.

5.2. Other Cross-modality Learning Mechanics

The results of cross-modality learning approaches other than MSE
are shown in Tables 3 and 4. For the BiInfoNCE loss, µ is set to
2.33. For the modality swap strategy, the swap rate is set to 0.2,
which means a random 20% of the frames from et are substituted
for the corresponding frames from es.

From the results, although all variations of cross-modality learn-
ing systems can outperform the baseline, the system using MSE loss
still takes the leading place. The effectiveness of generated text data
is validated by these results acquired with multiple cross-modality

System CS-All CS-Man CS-Eng

baseline 15.6 11.05 40.05
CM MSE, µ = 2.33 13.2 9.13 35.4

Swap rate 0.2 15.0 10.63 38.44
BiInfoNCE 14.89 10.65 37.7

Table 3: Overall TER%, CER% and WER% by using different
cross-modality learning mechanics.

learning approaches. Besides, it also suggests that the generated text
data alone cannot guarantee an expected performance boost, and in-
tentionally aligning the representations from the two modalities into
the same subspace is vital to the performance. We observe that two
CM systems of BiInfoNCE and modality swap reach a lower error
rate than that of MSE on the homogeneous test set shown in Table 4.

5.3. Preliminary Studies on Other Data Augmentation

We tried to leverage multi-lingual unlabeled speech to improve the
performance of our code-switching model as [10]. The experiment
carried out on the model pre-trained in a self-supervised manner with
75k hours of speech in 10 languages shows a small performance gain
over the model trained with 1.8k CS real data only but the gain dis-
appears when the generated CS data is added. In addition, we added
mono-lingual Mandarin and English labeled data (each of them con-
tains 10k hours of speech) into our model training together with an
auxiliary task of language identification at the frame level. It can
significantly improve the model performance on mono-lingual eval-
uation sets. However, the performance improvement over the model
trained with both CS real and generated data is marginal on the code-
switching test sets, which we are concerned about in this work.

6. CONCLUSIONS

In this paper, we demonstrate that it is beneficial to utilize external
data via generating code-switching text and using cross-modality
learning methods to inject it. We also investigate three approaches
of cross-modality learning to tie the speech and text representations
closer. It helps the T-T model to capture more code-switching-
specific features and thus boosts the performance of code-switching
Mandarin-English ASR. In future works, we will explore various
cross-modality learning more deeply and seek for other approaches
to leveraging external data.



7. REFERENCES

[1] Ne Luo, Dongwei Jiang, Shuaijiang Zhao, Caixia Gong, Wei
Zou, and Xiangang Li, “Towards end-to-end code-switching
speech recognition,” arXiv preprint arXiv:1810.13091, 2018.

[2] Zhiping Zeng, Yerbolat Khassanov, Van Tung Pham, Haihua
Xu, Eng Siong Chng, and Haizhou Li, “On the End-to-End
Solution to Mandarin-English Code-Switching Speech Recog-
nition,” in Proc. Interspeech 2019, 2019, pp. 2165–2169.

[3] Ke Li, Jinyu Li, Guoli Ye, Rui Zhao, and Yifan Gong, “To-
wards code-switching asr for end-to-end ctc models,” in
ICASSP 2019 - 2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2019, pp. 6076–
6080.

[4] Changhao Shan, Chao Weng, Guangsen Wang, Dan Su, Min
Luo, Dong Yu, and Lei Xie, “Investigating end-to-end speech
recognition for mandarin-english code-switching,” in ICASSP
2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2019, pp. 6056–
6060.

[5] Shuai Zhang, Jiangyan Yi, Zhengkun Tian, Jianhua Tao, and
Ye Bai, “Rnn-transducer with language bias for end-to-end
mandarin-english code-switching speech recognition,” in 2021
12th International Symposium on Chinese Spoken Language
Processing (ISCSLP), 2021, pp. 1–5.

[6] Shun-Po Chuang, Heng-Jui Chang, Sung-Feng Huang, and
Hung-yi Lee, “Non-autoregressive mandarin-english code-
switching speech recognition,” in 2021 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU),
2021, pp. 465–472.

[7] Yizhou Peng, Jicheng Zhang, Haihua Xu, Hao Huang, and
Eng Siong Chng, “Minimum word error training for non-
autoregressive transformer-based code-switching asr,” in
ICASSP 2022 - 2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2022, pp. 7807–
7811.

[8] Yizhou Lu, Mingkun Huang, Hao Li, Jiaqi Guo, and Yan-
min Qian, “Bi-Encoder Transformer Network for Mandarin-
English Code-Switching Speech Recognition Using Mixture of
Experts,” in Proc. Interspeech 2020, 2020, pp. 4766–4770.

[9] Xinyuan Zhou, Emre Yılmaz, Yanhua Long, Yijie Li, and
Haizhou Li, “Multi-Encoder-Decoder Transformer for Code-
Switching Speech Recognition,” in Proc. Interspeech 2020,
2020, pp. 1042–1046.

[10] Liang-Hsuan Tseng, Yu-Kuan Fu, Heng-Jui Chang, and Hung-
yi Lee, “Mandarin-english code-switching speech recogni-
tion with self-supervised speech representation models,” arXiv
preprint arXiv:2110.03504, 2021.

[11] Rui Zhao, Jian Xue, Jinyu Li, Wenning Wei, Lei He, and Yifan
Gong, “On addressing practical challenges for rnn-transducer,”
in 2021 IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU). IEEE, 2021, pp. 526–533.

[12] Zhehuai Chen, Yu Zhang, Andrew Rosenberg, Bhuvana Ram-
abhadran, Gary Wang, and Pedro Moreno, “Injecting text in
self-supervised speech pretraining,” in 2021 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU).
IEEE, 2021, pp. 251–258.
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