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ABSTRACT

In this paper, we propose a data-driven approach to train a Gener-
ative Adversarial Network (GAN) conditioned on “soft-labels” dis-
tilled from the penultimate layer of an audio classifier trained on a
target set of audio texture classes. We demonstrate that interpolation
between such conditions or control vectors provide smooth morph-
ing between the generated audio textures, and show similar or better
audio texture morphing capability compared to the state-of-the-art
methods. The proposed approach results in a well-organized latent
space that generates novel audio outputs while remaining consistent
with the semantics of the conditioning parameters. This is a step
towards a general data-driven approach to designing generative au-
dio models with customized controls capable of traversing out-of-
distribution regions for novel sound synthesis.

Index Terms— audio texture, morphing, audio classifier, GAN

1. INTRODUCTION
Sound morphing encompasses a set of models with the goal of pro-
ducing gradual transformations between sounds [1]. Sound morph-
ing is useful in applications of sound design including music compo-
sitions, video games, and sound synthesizers [2]. Although there is a
lack of consensus in the literature about the exact definition of sound
morphing [1, 2], there are certain characteristics of sound morphs
that are commonly agreed upon. For example, the morphing trans-
formation between two sounds is expected to produce perceptually
intermediate results that should fuse into a single perceptual source
that resembles both sounds at the same time [1, 3, 2].

We focus on audio textures, a rich class of sounds in which
certain parameters remain stationary over time [4] despite statisti-
cal variation within the sound. For example, the sound of wind at
a certain strength or the sound of tapping at a certain rate. Sounds
with specifically varying spectro-temporal envelopes such as a sin-
gle footstep, speech, or music do not fall under this definition of
audio textures. Automatic audio texture synthesis is an active area
of research [4, 5, 6] that has applications in sound design and Foley
synthesis systems [7].

Many studies have explored morphing between musical instru-
ment timbres [2, 8, 1] or voice timbres [3, 9] using various signal
processing techniques, however there have been limited studies on
audio texture morphing. Morphing between two pitched musical
instruments or two voiced phonemes is typically achieved through
signal processing techniques such as interpolation between the co-
efficients of a source-filter model representation of the two sounds
[3], or interpolation between the harmonic components of a sinu-
soidal model representations of the two sounds [2]. Such methods
have an underlying requirement that the two sounds are pitched, such
as musical instruments or voiced utterances, therefore applicability
of such techniques to non-pitched audio texture sounds is limited.

Moreover, linear interpolation between parameters may not result in
perceptually linear interpolation between the sounds [1].

The goal of parametric audio texture synthesis is to generate
novel sounds with descriptive parameters that match those of a target
texture. McDermott et al. [4] developed a set of statistics based on
a cochlear model to describe the perceptually relevant aspects of a
given audio texture. Recent works [10, 5, 11] have adapted the sem-
inal work on image style transfer [12] for audio texture synthesis,
where hand-crafted statistics are replaced with Gram matrix statistics
computed as the correlation between feature activations to represent
style. Though this method of audio style transfer produces interest-
ing combinations of the sounds, there is no control of semantic style
or content features other than through the data examples provided.

Recently, parametrically controllable audio synthesis has been
used to help organize the latent space of the GAN and Variational
Autoencoder (VAE) independent of the control parameters. Luo et
al. [13] learn latent distributions using VAEs to separately control
the pitch and timbre of musical instrument sounds. Engel et al. [14]
conditioned an autoregressive model to interpolate between musi-
cal instruments to generate new sounds. The GANSynth architec-
ture [15, 16] used a ProgressiveGAN for controlled musical note
synthesis conditioned on one-hot vector for pitch. However, such
architectures are under-explored for audio textures, in part because
it is difficult to label audio texture data correctly and robustly with
control parameter values. Moreover, one-hot representation of the
conditioning vector is nominal and sparse, which may produce un-
convincing interpolations in the parameter space during generation.
Continuous-valued or floating point conditioning has its own chal-
lenges, particularly if the range of parameter values is not densely
sampled in the training set [17], but it is more naturally suited to the
goal of generation with interpolated values.

In this paper, we propose a data-driven controllable audio texture
morphing strategy with the following contributions: (a) a data-driven
parameter distillation method for conditioning GAN for controlled
audio texture synthesis, (b) a linear interpolation strategy for condi-
tioning parameters that leads to controlled inter- and intra-class mor-
phing of audio textures, (c) a systematic comparison of our method
with existing methods through a set of existing and new objective
metrics, (d) our code for parameter distillation through an audio clas-
sifier and for GAN training.

2. CONDITIONAL GAN
In this work, we identify two types of continuous conditional pa-
rameters - class-identity parameters C and intra-class parameters
P . Although they function in the same way during GAN train-
ing, class-identity parameters are derived from a classifier trained
on the same dataset used to train the GAN. Intra-class parameters
are the ones related to the semantics within an audio class. For ex-
ample, strength is an intra-class parameter for the audio texture class
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wind. Class-identity parameters, by construction, have semantics
computed from the dataset, and can be used to navigate between
classes while intra-class parameters have externally imposed seman-
tics and may or may not correlate with the class labels. We explore
two strategies of multi-dimensional conditioning with intra-class and
class-identity parameters: (1) two one-hot conditioning vectors, one
for representing intra-class parameter, and the other for representing
class-identity, called One-hot GAN , and (2) multi-dimensional float-
ing point soft-labels extracted from the penultimate layer of a pre-
trained audio classifier representing class-identity conditioning pa-
rameters, along with a 1-dimensional floating point intra-class con-
ditional parameter, called MorphGAN.

2.1. One-Hot GAN
We adopt Engel et al.’s[15] progressive-GAN with one-hot condi-
tioning (Figure 1(a)). The intra-class parameter P has dimension q
equal to the number of unique control parameter values. The class-
identity parameter C has dimension r equal to the number of sound
classes. To encourage the generator to use the conditional informa-
tion, an auxiliary classification (AC-criterion) loss is added to the
discriminator that learns to predict the conditional vector. The AC-
criterion calculates the categorical cross entropy loss between the
ground-truth conditional vector and the predicted conditional vector
through the discriminator.

2.2. MorphGAN
Previously, DarkGAN [18] took a knowledge distillation approach
and used the probabilities extracted from the output layer of an au-
dio classifier that was trained on an external dataset (AudioSet) as a
conditional vector for their GAN. However, labels determined by an
external dataset may have little relevance for a specific sound model
training set. This can lead to a lack of interpretable control over
the generated audio. In MorphGAN, we extract soft-labels from the
penultimate layer of an audio classifier that is trained on the sound
model training dataset.Since these multi-dimensional soft-labels are
learnt by the classifier, they capture multiple class-related aspects of
the sound set. These dimensions enable interpretable control over
interpolation between points in the latent space of the GAN, gen-
erating cyclostationary morphs (a sequence of audio segments each
produced with different parameters) across novel in-between sounds.

MorphGAN uses a single dimensional floating point value for
intra-class parameter P and x dimensional floating point soft-labels
from the output of the penultimate layer of the audio classifier as
the class-identity parameter C. Since each data point can have non-
exclusive values for each dimension, we use binary cross entropy for
auxiliary classifier loss, in which the loss is the sum of the individual
binary cross-entropy computation on each dimension,

L = − 1

K

K∑
k=1

[yk log(ŷk) + (1− yk) log(1− ŷk)] (1)

where yk is target conditioning value in the range of [0,1], and ŷk is
the predicted value from the auxiliary classifier for the kth dimen-
sion. Subsequently, a sigmoid activation squashes the values in the
range [0,1]. Figure 1(c) shows an overview of MorphGAN.

3. EXPERIMENTAL SETUP
3.1. Datasets
We use two types of audio textures in this paper - water, and wind.
Water: The water sound was recorded by filling a metallic bucket
with water at an approximately constant rate over a duration of 30
seconds. We collected 50 audio recordings of different lengths to
capture the variation between multiple fillings.The transient sounds
at the beginning and end of each sound was trimmed, and then sound
was divided into 11 equally spaced time points used as the starting

Fig. 1. System overview. GAN input features are a random noise
latent vector Zp (p-dim), along with either (a) One-hot vectors for
intra-class parameter Pq (q-dim) and class-identity parameter Cr (r-
dim), or (b) Morph-GAN with one dimensional intra-class parameter
P1 but x dimensional soft labels for class parameter Cx from the out-
put of the penultimate layer of a pre-trained n-class audio classifier.

point of a 2-second excerpt labeled with one of 11 different “fill lev-
els” normalized to steps of 0.1 in [0,1]. Ten variations were produced
from different recordings.
Wind: The wind sound is from the Syntex collection of synthetic
datasets [19]. This texture is generated with noise passed through
filters modulated with simplex noise1. A “strength” parameter con-
trols the wind gust fluctuations defined by the bandpass filter center
frequencies. The strength parameter ranges in [0,1] across steps of
0.1, and 10 variations are generated from different random seeds,
resulting in 110 audio files each of 2 seconds duration.

3.2. Architectures
GAN: We adapt the Nistal et al. [16] progressive-GAN implemen-
tation where generator G transforms the 1D input vector (Z+P+C)
to the generated output signal over 5 progressively-grown stages and
upsampling CNN blocks. The Z vector is 32-dimensional following
[18]. The P and C vector dimensions are different across the two
GAN variants we employ (Section 3.3). We found that training mod-
els for 120K iterations on batch-size 12 with 20k iterations for the
first three stages and batches of 8 files with 30k iterations for the last
two produces high quality output (Table 1). The audio representation
is a magnitude spectrogram computed using the Gabor transform
(window size=256, hop size=128). Inversion of the estimated spec-
trogram is done using phase gradient heap estimation (PGHI) [20].
PGHI is a non-iterative phase reconstruction algorithm that uses the
mathematical relationship between the magnitude of Gaussian win-
dowed STFT and the phase derivatives in time and frequency of the
Fourier transform to reconstruct the phase using only the magnitude
spectrogram. Gupta et al. [6] showed through listening tests that
training the GANSynth architecture using only log-mag representa-
tion and PGHI inversion produces significantly better audio quality
for wideband, non-pitched or fast changing signals. Since the audio
data we use in this paper consist of such sounds, eg. water-filling,
we used PGHI for reconstruction as it gives better audio quality.
Audio Classifier: The DenseNet model [21] pretrained on ImageNet
[22] and fine-tuned for a specific audio dataset can achieve state-
of-the-art results for audio classification. We adopted this method
for audio classification to generate class soft-labels for MorphGAN.
We use the pre-trained Dense Convolutional Network (DenseNet201
PyTorch library), that connects each layer to every other layer in
a feed-forward fashion. DenseNet expects a 3-channel input, so a
three-channel mel-spectrogram of the audio input is computed us-
ing different window sizes and hop lengths of [25ms, 10ms], [50ms,

1Section 1.2 of https://animatedsound.com/ismir2022/
metrics/appendix_dataset/index.html

https://animatedsound.com/ismir2022/metrics/appendix_dataset/index.html
https://animatedsound.com/ismir2022/metrics/appendix_dataset/index.html


Fig. 2. Three dimensional soft label values from the penultimate
layer of the audio classifier. These are subsequently used for condi-
tioning MorphGAN. The blue markers are water-filling sounds and
the red markers are the wind sounds.

25ms], and [100ms, 50ms] on each of the channels respectively. The
different window sizes and hop lengths ensure the network has dif-
ferent levels of information from the frequency and time domain on
each channel, which was shown to perform well for audio classifi-
cation [21]. The DenseNet gives a 1,920 dimensional output after
which we add two linear layers sequentially of x and n dimensions
respectively, where x is a selectable number of soft-labels and n
is the number of audio classes. Subsequently, a sigmoid activation
function squashes x values between 0 and 1 before using them as
class conditional inputs for MorphGAN.

3.3. Models
One-Hot GAN: P is 11 dimensional to represent the 11 discrete
values (10 equally-spaced intervals across the range) of the control
parameter for the two textures, and C is 2 dimensional. Note that
P is a dual serving intra-class parameter, representing fill level for
water and strength for wind.
MorphGAN: P is a 1D floating point dual serving intra-class pa-
rameter for the two textures, discretized to 11 values in [0,1], while
C is a 3 dimensional soft-label extracted from the penultimate layer
of the audio classifier, values between [0,1]. An 80/20% split was
used for training and validation (val accuracy=100%). The entire
water-wind dataset was then passed through this trained classifier to
extract the soft-labels from the penultimate layer. Figure 2 shows
the 3 dimensional soft labels that were learnt by the audio classifier,
color-coded with the audio texture class. It is evident that this 3D
vector has a wide range of values while also being able to represent
the two classes, thus we hypothesize that this 3D vector, when used
for class conditioning MorphGAN, will offer more flexibility and
control for inter-class morphing than using 1D class vectors.
Baseline: As a baseline for comparison, we use Zynaptic’s MORPH2.02,
a commercial real-time plug-in for structural audio morphing. We
chose their “classic” (vocoder-like) interpolation algorithm that uses
signal processing to model the timbral shape for every time frame
of the two audio inputs, and then interpolates between these models,
transforming one sound into the other. Other open-source toolkits,
such as sound morphing toolbox [8] fail for non-pitched audio tex-
tures such as water-filling as they employ matching of harmonics in
the sound, thus restricting their use in our experiments.

We explore two kinds of morphs, inter-class morphs, that in-
terpolate between two points in class-identity conditioning dimen-
sions, and intra-class morphs, that interpolate between two points
in intra-class conditioning dimensions. In the Morph2.0 baseline,
we compute interpolations between two sounds from the original
data, where for inter-class interpolations, the two sounds belong to
water and wind classes, and for intra-class interpolations, the two

2https://www.zynaptiq.com/morph/morph-overview/

sounds belong to the same class but two extreme intra-class param-
eter (fill-level/strength) values. The interpolation is along the morph
axis (cross-fade axis=0) of the interface.

4. RESULTS
Audio examples and the evaluation code to generate the metrics are
available on our webpage. 3.
4.1. Audio Quality
We use the Fréchet Audio Distance (FAD) [23] metric (distance be-
tween the distributions of the embeddings of real and synthesized
audio data extracted from a pre-trained VGGish model) to evaluate
audio synthesis quality as it has been shown to be consistent with
human judgements [23, 16, 6]. We compute the FAD for the wind
and water sounds generated by the two GAN models, as well as the
original one-hot model with latent vector size and training iterations
same as in [16, 6], as shown in Table 1. We use the training data
as the reference distribution and generate 10 variations per condi-
tion from each GAN as the test distributions. Our one-hot GAN has
reduced dimensions for Z and fewer training iterations but shows
similar performance as the original one-hot model. This lightweight
architecture has the advantage of reduced training time, and is more
suitable for the limited but targeted range of sounds in our dataset.
Overall, MorphGAN performs better than the One-Hot GANs.

Table 1. FAD between generated distribution and real distribution.
↓ indicates smaller is better.

Architecture Details FAD-
water(↓)

FAD-
wind(↓)

Original one-hot
[16, 6]

128-D Z, one-hot P ,C,
1.2M training iterations

5.83 1.25

One-Hot GAN
(Reduced Z dims)

32-D Z, one-hot P ,C,
120K training iterations

5.04 1.21

MorphGAN 32-D Z, 1-D FP P , 3-D FP
C, 120K training iterations

3.13 0.87

4.2. Intra-class Morphing
We quantify interpolation smoothness of the intra-class morphed
sounds by adopting the parameter sensitivity metric from [24]. This
sensitivity metric evaluates the linearity of change in the perceptual
distance of an interpolated sound as the intra-class control parameter
P is varied from its lowest to its highest value linearly. This linear-
ity of change is quantified using the Pearson’s correlation coefficient.
Amongst the perceptual distance measures discussed in [24], we use
Gram Matrix (GM) loss and FAD because these measures showed
high correlation with human perception for the audio textures in this
study. Table 2 shows that MorphGAN is able to produce more per-
ceptually linear intra-class morphs than One-Hot GAN and Morph2.

Table 2. Intra-class morphing. ↑ indicates larger values are better.
Architecture Control Parameter Sensitivity(↑)

w/ GM Loss w/ FAD

MorphGAN Wind 0.97 0.98
Water 0.99 0.95

One-Hot GAN Wind 0.80 0.75
Water 0.47 0.74

Morph2 Wind 0.77 0.19
Water 0.90 0.64

4.3. Inter-class Morphing
To evaluate inter-class morphing, we analyse the effectiveness of the
algorithms to (1) linearly/smoothly morph between classes, and (2)
their ability to generalize to out-of-distribution (OoD) points in the
class parameter space C.

For morph smoothness, we adapt the parameter sensitivity met-
ric outlined in the previous section by measuring the GM Loss and
FAD between class interpolated samples. Table 3 shows that Mor-
phGAN is able to produce smoother linear interpolations between
classes than the other methods.

3https://animatedsound.com/research/morphgan icassp2023/



To the best of our knowledge, there is no standard evaluation
technique to test OoD generalizability during morphing. We thus
develop two additional metrics: Distribution Closeness and Distri-
bution Centeredness of the samples generated using OoD class pa-
rameter values in comparison with the training data. Specifically, we
choose the out-of-distribution value k = 0.5 for the three class di-
mensions of MorphGAN (center of the cube in Figure 2), for the two
class dimensions of One-Hot GAN, and for the morph axis (center)
for Morph2.0. For each algorithm we measure the FAD between the
distribution of samples generated from the center point k and the dis-
tribution of samples from each of the two classes. We term the mean
of the two distances as Distribution Closeness to indicate the algo-
rithms’ ability to produce sounds related to the training data at this
OoD point. Further, we refer to the difference between the two dis-
tances as Distribution Centeredness to indicate the skew of the center
point towards any one class. Table 3 shows that the OoD center point
of the class parameter space C of MorphGAN is perceptually closer
and centered between both the classes and thus can generate more
perceptually meaningful and novel morphs in the neighborhood of
that location compared to One-Hot or Morph2.

Table 3. Inter-class morphing. ↑ indicates larger values are better.

Architecture

Class Parameter Sensitivity(↑) Distribution
Closeness(↓)

Distribution
Centeredness(↓)w/ GM Loss w/ FAD

MorphGAN 0.96 0.90 8.03 6.00
One-Hot
GAN

0.96 0.76 14.05 13.70

Morph2 0.84 0.25 16.15 8.70

Qualitatively, the One-Hot morph samples exhibit a stickiness
towards one class, and towards the center of the interpolation, there
is a sudden transition to the second class, resulting in an abrupt inter-
polation. In MorphGAN interpolations, the frequency components
of the wind class gradually modify and merge with the frequency
components of the water class which corresponds to the perception
of a smooth morph (Figure 3 and webpage).

To examine this objectively, we sample a path in the class iden-
tity parameter C between a wind and a water sound at 11 points,
and for each, we generate 20 audio files for random values of Z.
The generated audio files are passed back through the classifier and
we plot box plots of the output class node0 (water class) values
for One-Hot and MorphGAN (Figure 4). Both One-Hot and Mor-
phGAN show consistent outputs towards the class end-points (small
std dev in the boxes). However, for class values in between the end
points for which neither the classifier nor the GAN were trained,
One-Hot shows smaller spread than MorphGAN. This indicates that
MorphGAN produces novel morphing sounds with characteristics
distinct from the classifier training data whereas the One-Hot tends
to stick to one or the other of the two classes. This reinforces our
qualitative observation about the same and limits the exploration of
sounds in between classes using the One-Hot representation.
4.4. Semantic exploration of inter-class morphing
To analyse the semantic control of the three class parameter dimen-
sions C of MorphGAN, we varied each dimension from 0 to 1 in
steps of 0.1, while keeping all other dimensions constant at 0.5, and
fixing a random Z vector (Figure 5 (top)). Qualitatively, we can de-
scribe variation in the first C dimension 0 as taking the texture from

Fig. 3. Concatenated 2s audio outputs from (a) One-Hot GAN, and
(b) MorphGAN as the class parameter C interpolates between values
for wind to water in 11 steps while keeping P fixed.

Fig. 4. Output activation values for node0 (water) of classifier for
audio generated from (a) One-Hot GAN, and (b) MorphGAN. The
Y-axis is the node0 (water) output from the classifier, and the X-axis
is the class parameter interpolated from water to wind.

a gurgly-wind sound to a wind-like sound. Lower parameter val-
ues also contain higher frequency components from water sounds.
Dimension 1 variation takes the texture from a windy whooshing
sound to a more watery swish-like sound, where the higher values
of this dimension introduce the higher frequency components but at
lower amplitudes. Dimension 2 variation moves the texture between
water-like and wind-like sounds.

To gain objective insight, we passed these generated audio files
back through the audio classifier and plotted the value of the two
output node (water and wind) values in Figure 5 (bottom). The clas-
sification node output values show a trend reinforcing what we hear.
For example, dimension 0 variation initially shows a somewhat am-
biguous class pattern which changes to predominantly windy. Di-
mension 1 is smoothly varying, but changes quality while remaining
water-like. Dimension 2 (given the values of the other dimension)
takes the sound from a fairly clear water to a clear wind sound. These
controls afford a perceptual variety of paths between any two end-
points with access to novel sounds that can be explored creatively -
for example, to create a wind amplitude pattern modulating a water
sound, or to add a bubbly quality to a a wind sound.

Fig. 5. Spectrogram (top) of concatenated audio outputs of 2s and
corresponding audio classifier node activations (bottom) as class pa-
rameter (a) dimension 0, (b) dimension 1, and (c) dimension 2 are
varied from 0 to 1 at steps of 0.1. Other dimensions are fixed.

5. CONCLUSION
In this work, we show that class parameters derived from an audio
classifier trained on target data is effective for producing convincing
morphs between different audio textures. We demonstrate that these
class conditional parameters also provide multiple interpretable con-
trol dimensions for morphing between two sounds along different
paths. We also show that the class parameters consistently produce
the intended class across the latent Z space. In the future, improv-
ing the consistency of arbitrary control parameters along with wider
range of audio textures need to be explored. Future work will also
include perceptual listening tests using both audio experts as well a
novice listeners and include think-aloud studies to comprehensively
analyze the effect of deep learning algorithms over existing base-
lines. This work is a step towards building data-driven controllable
audio texture morphing frameworks.
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