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ABSTRACT

This work aims to investigate the problem of 3D modeling us-
ing single free-hand sketches, which is one of the most natural
ways we humans express ideas. Although sketch-based 3D
modeling can drastically make the 3D modeling process more
accessible, the sparsity and ambiguity of sketches bring sig-
nificant challenges for creating high-fidelity 3D models that
reflect the creators’ ideas. In this work, we propose a view-
and structural-aware deep learning approach, Deep3DSketch,
which tackles the ambiguity and fully uses sparse infor-
mation of sketches, emphasizing the structural information.
Specifically, we introduced random pose sampling on both
3D shapes and 2D silhouettes, and an adversarial training
scheme with an effective progressive discriminator to facili-
tate learning of the shape structures. Extensive experiments
demonstrated the effectiveness of our approach, which out-
performs existing methods – with state-of-the-art (SOTA)
performance on both synthetic and real datasets.

Index Terms— Sketch, 3D modeling, Computer-Aided
Design.

1. INTRODUCTION

The rapid development of portable displays and AR/VR
brings tremendous demands for 3D content [1]. Computer-
Aided Design (CAD) methods require creators to master
sophisticated CAD software commands (commands knowl-
edge) and to be able to parse a shape into sequential com-
mands (strategic knowledge), which restricts its application
in expert users [2, 3]. The restrictions call for the need for
alternative methods to open the door to 3D modeling for the
masses. In recent years, sketch-based 3D modeling has been
recognized as a potential solution, as sketches are one of
the most natural ways we humans express ideas. While many
works have proposed to perform 3D modeling using sketches,
Most existing works either require precise line drawings from
multiple views or apply step-by-step workflow with strategic

* 02750@zjhu.edu.cn

knowledge required [4, 5], which is not friendly for novice
users. Other work use template primitives or retrieval-based
approaches [6, 7], but lack the customizability.

To mitigate the research gap, we aim to use only one sin-
gle sketch as the input to generate a complete and high-fidelity
3D model. The approach is designed to fully exploit the hu-
man sketches to develop an intuitive and fast 3D modeling ap-
proach – generating a high-fidelity 3D model that represents
the creators’ intention.

However, generating a 3D model from a single sketch is
non-trivial. The sparsity and ambiguity of sketches bring sig-
nificant challenges. Specifically, sketches are sparse because
they have only a single view, are mostly abstract, lack fine
boundary information when drawing by humans, and, more
critically, lack the texture information for depth estimation.
This brings large uncertainty when learning 3D shapes. The
abstract boundary also makes it hard to interpret, as the same
set of strokes may lead to different interpretations in the 3D
world, which leads to ambiguity. Existing works [8, 9] have
demonstrated that deploying a widely-used auto-encoder as
the backbone of the network can only obtain coarse predic-
tion, but is unable to obtain the fine-grained 3D structures.

Facing the challenges, we present our Deep3DSketch, a
novel and more effective sketch-based modeling approach,
which can obtain 3D shapes with fine-grained and reasonable
3D structures. Specifically, we first explicitly learn the view
information and use it to condition the generation process to
resolve the ambiguity. We then perform random pose sam-
pling to force learning of realistic and high-fidelity 3D shapes
independent from the viewpoint. The disentanglement is sim-
ilar to disentangling ”where” and ”what” [10]. We also in-
troduce an adversarial training scheme with an effective pro-
gressive discriminator that is aware of the geometric struc-
ture of the objects via cross-view silhouettes of the 3D model.
The discriminator alleviates the uncertainty from the sparsity
through more visual clues from different viewpoints, leading
to better optimization results. Extensive experiments demon-
strated the effectiveness of our approach for generating 3D
models with higher fidelity, achieving state-of-the-art (SOTA)
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Fig. 1. The structure of Deep3DSketch. View- and structural- aware sketch-based 3D modeling with adversarial training.

performance on both synthetic and real datasets.

2. METHOD

2.1. Preliminary

Given the input binary sketch I ∈ {0, 1}W×H , the goal of
the network G is to obtain a mesh MΘ = (VΘ, FΘ), in which
VΘ and FΘ represents the mesh vertices and facets, and the
rendered silhouette SΘ : R3 → R2 of MΘ matches with the
information from the input sketch I . We use commonly-used
encoder-decoder structure as the backbone, an Encoder E is
used to obtain a compressed shape code zs and a Decoder
D manipulate zs to calculate the vertex offsets of a template
mesh and deforms it to get the output mesh MΘ = D(zs).

2.2. View-Aware 3D Model Generation

We first introduce extra clues – view information, which can
tackle the challenge of ambiguity [9]. As we humans use
viewpoint clues to recognize and interpret 3D objects, view-
point clues are important in single sketch-based 3D model-
ing, especially in resolving ambiguity. Therefore, we explic-
itly learns the viewpoint and use the viewpoint information to
condition the generation process. We first let the encoder E
produce another latent code zl and input it to the viewpoint
prediction module. We implement two fully-connected layers
to produce the viewpoint estimation ξpred, represented by an
Euler angle. The viewpoint prediction module is optimized in
a fully-supervised manner, with the input of the ground truth
viewpoint and supervised by a viewpoint prediction loss Lv ,
which adopted MSE loss for predicted and ground truth cam-
era pose, defined as:

Lv = ∥V − V̂ ∥2 = ∥V −Dv (zv)∥2 (1)

The output viewpoint prediction ξpred is fed into a differen-
tiable renderer to render silhouette at the given viewpoint for
supervision. Specially, we use the mIoU Loss Liou to mea-
sure the similarity between the rendered silhouette S1 and the

silhouette of the input sketch S2:

Liou (S1, S2) = 1−
∥S1 ⊗ S2∥1

∥S1 ⊕ S2 − S1 ⊗ S2∥1
(2)

For computational efficiency, we progressively increase the
resolutions of silhouettes, forming the multi-scale mIoU loss
Lsp, which is represented as

Lsp =

N∑
i=1

λsiLi
iou (3)

The predicted viewpoint is also used to guide the gener-
ation process. We fed the viewpoint into another two fully-
connected layers to produce a view-aware vector representa-
tion zv , and input both zv and zs to the Decoder D to produce
the MΘ.

To further condition the generation process with view-
point constraints, we add a Random-View Mesh Synthesis
branch, in which a random viewpoint ξrandom is obtained
and a mesh MΘr is generated following the same manner as
mesh generation with ξpred. The generated MΘr with ran-
dom (fake) viewpoint constraint is regarded as the fake sam-
ple, while the generated mesh MΘ is regarded as the real
sample. They together feed into a Shape Discriminator CD,
to force the neural network generate meshes under the view-
constraint.

2.3. Structural-Aware 3D Model Generation

So far, the supervision of the mesh generation fidelity is from
a single rendered silhouette of generated mesh with a given
viewpoint as the input. With only 2D input as the supervision,
our goal is, however, to obtain complete 3D shapes with fine-
grained structural information. A single sketch and the corre-
sponding silhouette can only represent the information at that
given viewpoint, but lacks the information from other view-
points, thus making it hard to obtain detailed structural infor-
mation. The sparsity of the sketch contributed to the difficulty
of obtaining fine-grained structures. Therefore, we propose
to have multiple random-view silhouettes. The random pose



sampling aims to force the network learns to generate reason-
able 3D fine-structured shapes independent from the view-
points. In addition, as many previous works investigated in
the realm of shape-from-silhouette, the proposed multi-view
silhouettes contain valuable geometric information about the
3D object [11, 12, 13]. In practice, we randomly sample N
camera poses ξ1...N from camera pose distribution pξ. We
use a differentiable renderer to render the silhouettes S1...N

from the mesh M and render the silhouettes Sr {1...N} from
the mesh Mr. The differentiable renderer R is shown in [14].
By introducing the Sr {1...N} , the network is aware of the
geometric structure of the objects in cross-view silhouettes
when generating the 3D objects, and the discriminator helps
to resolve the challenge from the sparsity of sketches by of-
fering more visual clues. The disentanglement is very similar
to disentangling ”where” and ”what” principles in generative
models [10], which is proven to be effective in our tasks.

In addition, to fully capture the structural information of
the rendered silhouettes, we apply a convolutional progressive
growing discriminator CD. Following [15], our discriminator
is trained with increasing image resolution and incrementally
added new layers to handle the higher resolutions and dis-
criminate fine details. We discovered that such convolutional
discriminator design is more effective in capturing local and
global structural information to facilitate the generation of
high-fidelity 3D shapes, compared to MLP-enabled discrim-
inator for 3D objects. In training, non-saturating GAN loss
with R1 regularization is used [16] for better convergence:

Lsd = Ezv∼pzv ,ξ∼pξ
[f (CDθD (R(M, ξ)))]

+Ezvr∼pzvr ,ξ∼pξ
[f (−CDθD (R(Mr, ξ)))]

(4)

where f(u) = − log(1 + exp(−u)) (5)

2.4. Domain Adaptation

Due to the lack of large amount of ground truth 3D models
and the corresponding 2D sketches, we use synthetic data for
training and testing at real-world data, in which the domain
gap exists. To make our network generalizable to real hand-
draw datasets, we applied domain adaptation (DA) technique

and introduce the DA loss Ldd, as the same in [9].

2.5. Training Details

Loss Function. To make meshes more realistic with higher
visual quality, we also use flatten loss and Laplacian smooth
loss in [9, 17, 14] , represented by Lr. The overall loss func-
tion L is calculated as the weighted sum of five components:

L = Lsp + Lr + λvLv + λsdLsd + λddLdd (6)

Implementation Details. We use ResNet-18 [18] as the en-
coder for image feature extraction. The extracted 512-dim
feature goes through 2 linear layers with L2-normalization
and generates a 512-dim shape code zs and a 512-dim view
code zv . The rendering module is SoftRas [14], the number
of views N = 3. Each 3D object is placed with 0 in eval-
uation and 0 in azimuth angle in the canonical view, with a
fixed distance to the camera. We use Adam optimizer with an
initial learning rate of 1e-4, and multiply by 0.3 for every 800
epochs. Betas equal 0.9 and 0.999. The total training epochs
equal 2000. The model is trained individually with each class.
λr, λsd, and λdd in Equation. 6 equal to 0.1, λv and λvr, equal
to 10. When evaluating with the ShapeNet-Sketch dataset, we
use domain adaptation on 7 of the classes, which have suffi-
cient amount of sketches in the Sketchy dataset [19] and Tu-
Berlin dataset [20]. The domain adaptation is performed by
concatenating the average pooling and max pooling results of
the image feature map as input, as in [21].

3. EXPERIMENTS

3.1. Datasets

Training the model requires large-scale sketch data with the
corresponding 3D models, which is rare in the public domain.
Following [9], we use the synthetic data ShapeNet-synthetic
for training and testing, and the real-world data ShapeNet-
Sketch to evaluate the method in the wild. ShapeNet-
synthetic is the edge map extracted by a canny edge detector
provided by Kar et al. [22]. It contains 13 categories of 3D
objects from ShapeNet. The ShapeNet-Sketch is a dataset

Fig. 2. Qualitative evaluation with existing state-of-the-art. The visualization demonstrated our method’s capability of
synthesizing higher fidelity 3D structures.



Table 1. The quantitative evaluation of ShapeNet-Synthetic dataset.
Shapenet-synthetic (Voxel Iou ↑)

car sofa airplane bench display chair table telephone cabinet loudspeaker watercraft lamp rifile mean
Retrieval 0.667 0.483 0.513 0.38 0.385 0.346 0.311 0.622 0.518 0.468 0.422 0.325 0.475 0.455

Auto-encoder 0.769 0.613 0.576 0.467 0.541 0.496 0.512 0.706 0.663 0.629 0.556 0.431 0.605 0.582
Sketch2Model (GT Pos) 0.751 0.622 0.624 0.481 0.604 0.522 0.478 0.719 0.701 0.641 0.586 0.472 0.612 0.601
Sketch2Model (Pred Pos) 0.746 0.620 0.618 0.477 0.550 0.515 0.470 0.673 0.667 0.624 0.569 0.463 0.606 0.584

Ours (GT Pos) 0.796 0.651 0.644 0.500 0.612 0.544 0.518 0.738 0.705 0.651 0.595 0.469 0.619 0.618
Ours (Pred Pos) 0.793 0.649 0.641 0.500 0.583 0.541 0.504 0.680 0.683 0.623 0.580 0.465 0.619 0.604

Table 2. The quantitative evaluation of ShapeNet-Sketch dataset.
Shapenet-sketch (Voxel Iou ↑)

car sofa airplane bench display chair table telephone cabinet loudspeaker watercraft lamp rifile mean
Retrieval 0.626 0.431 0.411 0.219 0.338 0.238 0.232 0.536 0.431 0.365 0.369 0.223 0.413 0.370

Auto-encoder 0.648 0.534 0.469 0.347 0.472 0.361 0.359 0.537 0.534 0.533 0.456 0.328 0.541 0.372
Sketch2Model (GT Pos) 0.659 0.534 0.487 0.366 0.479 0.393 0.357 0.554 0.568 0.526 0.450 0.338 0.534 0.483

Sketch2Model (Pred Pos) 0.649 0.528 0.479 0.357 0.435 0.383 0.361 0.551 0.547 0.544 0.466 0.336 0.510 0.470
Sketch2Model + DA (GT Pos) 0.679 0.548 0.526 0.367 - 0.398 0.357 - - - - - 0.535 0.489

Sketch2Model + DA (Pred Pos) 0.659 0.533 0.515 0.362 0.385 0.360 0.511 0.475
Ours (GT Pos) 0.695 0.528 0.502 0.364 0.493 0.389 0.370 0.574 0.563 0.538 0.477 0.334 0.535 0.489

Ours (Pred Pos) 0.683 0.523 0.502 0.364 0.493 0.389 0.370 0.527 0.549 0.509 0.468 0.331 0.535 0.476
Ours + DA (GT Pos) 0.699 0.538 0.517 0.362 - 0.390 0.360 - - - - - 0.545 0.491

Ours + DA (Pred Pos) 0.692 0.532 0.515 0.360 - 0.382 0.346 0.545 0.477

collected from real-human drawings. Volunteers with varied
drawing skills are asked to draw objects based on the rendered
images of 3D objects, with a total number of 1300 sketches
and their corresponding 3D shapes.

3.2. Results

The ShapeNet-Synthetic Dataset. We first evaluate the
performance on the dataset with the ground truth 3D model.
Meshes with the predicted viewpoint (Pred Pos) and the
ground truth viewpoint (GT Pos) are trained and evaluated,
respectively. We apply common-used 3D reconstruction met-
rics – voxel IoU to measure the fidelity. The result is shown
in Table 3.2. Our method achieves state-of-the-art (SOTA)
performance in every category. The quantitative evaluation of
our method compared with existing state-of-the-art in Figure
2 further demonstrated the effectiveness of our approach to
reconstructing models with higher fidelity in structure.
The ShapeNet-Sketch Dataset. We further evaluate the per-
formance of real-world human drawings. We train the model
on ShapeNet-Synthetic dataset and use ShapeNet-Sketch
dataset for evaluation. As shown in Table 3.2, our model
outperforms the existing state-of-the-art methods in most
categories. Our method outperforms the existing method in
some categories even without Domain Adaptation (DA).

3.3. Ablation Study

To show the effectiveness of our proposed method, we con-
ducted the ablation study that removes Random Pose Sam-
pling (RPS) for view-awareness. We also remove the pro-
gressive Convolutional Discriminator (CD) and use an MLP-
based discriminator as in [9]. Our quantitative result (Table 3)
and qualitative example (Figure 3) shows removing the RPS
and CD will be detrimental to the performance.

Table 3. Quantitative evaluation of ablation study.

Ablation Study. (Numbers inside and outside the parenthesis are IoU on Pred View and GT View, respectively)
RPS CD car sofa airplane bench display chair table

0.747 (0.753) 0.624 (0.643) 0.557 (0.565) 0.345 (0.460) 0.457 (0.577) 0.499 (0.508) 0.406 (0.427)√
0.782 (0.773) 0.641 (0.639) 0.644 (0.639) 0.461 (0.485) 0.597 (0.540) 0.543 (0.538) 0.512 (0.477)√ √
0.796 (0.793) 0.651 (0.649) 0.644 (0.641) 0.500 (0.500) 0.612 (0.583) 0.544 (0.541) 0.518 (0.504)

RPS CD telephone cabinet loudspeaker watercraft lamp rifile mean
0.522 (0.705) 0.597 (0.579) 0.584 (0.614) 0.574 (0.575) 0.290 (0.421) 0.500 (0.576) 0.516 (0.569)√
0.734 (0.673) 0.696 (0.645) 0.636 (0.599) 0.585 (0.553) 0.478 (0.471) 0.619 (0.627) 0.608 (0.588)√ √
0.738 (0.680) 0.705 (0.683) 0.651 (0.623) 0.595 (0.580) 0.469 (0.465) 0.619 (0.619) 0.618 (0.604)

Fig. 3. Visualization of Ablation. The network generates un-
wanted structures w/o RPS and unrealistic structure w/o CD.

4. CONCLUSION

We propose Deep3DSketch, a novel 3D modeling approach
that generates 3D models with only a single sketch. For high-
fidelity 3D modeling, we disentangle the learning of view and
structural learning. We first condition the generation on an ex-
plicitly learned viewpoint, then use random pose sampling for
viewpoint-independent learning of shapes and fully exploit
the geometric information in cross-view silhouettes. We also
introduce a progressive convolutional discriminator to better
capture the structural information of a 3D mesh at local and
global levels. With the alleviated ambiguity and sparsity, we
have shown state-of-the-art (SOTA) performance on both real
and synthetic data. We believe our method has great potential
to revolutionize future 3D modeling pipelines.
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