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ABSTRACT

This paper describes our NPU-Elevoc personalized speech en-
hancement system (NAPSE) for the 5th Deep Noise Suppression
Challenge[1] at ICASSP 2023. Based on the superior two-stage
model TEA-PSE 2.0 [2], our system particularly explores better
strategy for speaker embedding fusion, optimizes the model training
pipeline, and leverages adversarial training and multi-scale loss.
According to the results12, our system is tied for the 1st place in the
headset track (track 1) and ranked 2nd in the speakerphone track
(track 2).
Index Terms— personalized speech enhancement, real-time, gener-
ative adversarial network, deep learning.

1. INTRODUCTION
Taking a speaker’s short enrollment as prior, personalized speech
enhancement (PSE) aims to extract the target speaker’s speech
from a mixture signal that may contain noise, reverberation, and
interfering speaker. The 5th edition of the deep noise suppression
(DNS) challenge, held in ICASSP 2023, particularly focuses on
PSE for full-band signal collected from headset microphone (track
1) and speaker-phone (track 2). In this challenge, our model is
based on TEA-PSE 2.0 [2] – an upgraded two-stage model from the
previous DNS challenge championship [3]. Still keeping the two-
stage strategy of decomposing a difficult learning task into easier
sub-processes, TEA-PSE 2.0 adopts subband operations and a time-
frequency convolution module to reduce computational complexity
and further improve performance. Compared to the oracle TEA-
PSE 2.0, we have made substantial improvements in several aspects.
First, we leverage a stronger ResNet34-based speaker embedding
model which has recently achieved state-of-the-art performance on
VoxCeleb [4]. Moreover, inspired by the recent observation [5]
that a simple filterbank feature can preserve the integrity of speaker
information with good generalization, we explore the complemen-
tarity between such acoustic representation and commonly-used
neural speaker embedding through fusion experiments. Second, we
study the training strategy for the two-stage model with the conclu-
sion that the best performance is achieved when we first train the
stage-one model, then freeze the stage-one model to train the stage-
two model, and finally, jointly train both stage models. Ultimately,
we improve model optimization with multi-scale loss [6] and GAN
loss [7, 8]. Particularly, we adopt MetricGAN [7, 8] to predict PESQ
and DNSMOS because it can learn these non-differentiable metrics
to optimize the model.

*Corresponding Author
1https://aka.ms/5th-dns-challenge
2https://github.com/microsoft/DNS-Challenge
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Fig. 1. Architecture of the NAPSE system.

2. PROPOSED METHOD
2.1. Overview
Our system is mainly composed of three parts: speaker encoder,
speech enhancement model, and MetricGAN discriminator. A
RestNet34-based speaker encoder [4] extracts speaker embedding
from the enrollment speech. The speaker embedding, together with
utterance-level mean and standard deviation of the Fbank feature
extracted from the enrollment speech, goes through a learnable
fusion module. The fused embedding is thus fed into the speech
enhancement model as the prior information for speaker extraction.
The speech enhancement model follows that in TEA-PSE 2.0 [2],
consisting of a two-stage model and subband operations. The
two-stage model includes MAG-Net (stage one) and COM-Net
(stage two) to process magnitude and complex features respectively.
The encoder of MAG-Net is composed of three frequency down-
sampling (FD) layers, the decoder of MAG-Net is composed of
three frequency up-sampling (FU) layers, and the middle layer is
composed of four stacked gated temporal convolutional modules
(S-GTCM). Likewise, COM-Net has a similar network topology as
MAGNet, while its dual-decoder architecture is designed to estimate
the real and imaginary spectrum separately. The MetricGAN dis-
criminator is introduced to help the speech enhancement model to
better optimize perceptual metrics including PESQ and DNSMOS.
2.2. GAN
Adversarial learning has shown superior performance recently. Per-
ceptual metrics that are closer to human auditory impression on
speech quality, have been recently considered as optimization tar-
gets [8, 9]. Thus, we adopt GAN to learn these non-differentiable
metrics. Specifically, we use MetricGAN+ [7] to predict PESQ and
MetricGAN-U [8] to predict DNSMOS OVRL respectively.
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mPESQ(ŝ, s) = (PESQ(ŝ, s) + 0.5)/5

mDNSMOS(ŝ, s) = (DNSMOS(ŝ)− 1.0)/4

LD = |D(ŝ)−m(ŝ, s)|2

LG = |D(ŝ)− 1.0|2

(1)

where s and ŝ refer to the original clean and estimated sources.
m(ŝ, s) is the function to get metric, and values are normalized to
[0, 1]. LD is used to train the MetricGAN discriminator network and
LG is used to train the speech enhancement network.

2.3. Loss function
For the stage-one network, we use the scale-invariant signal-to-noise
ratio (SI-SNR) loss Lsi-snr, the asymmetric loss Lasym and the magni-
tude spectral mean square loss Lmag. For the stage-two network, we
add the complex spectral mean square loss LRI. In addition to the
above losses in TEA-PSE 2.0, we add multi-scale loss [6] and GAN
loss as well, which are formulated as

L1 = Lsi-snr +
1

M

M∑
m=1

(Lasym + Lmag) + LG

L2 = Lsi-snr +
1

M

M∑
m=1

(Lasym + Lmag + LRI) + LG

(2)

where L1 and L2 are the total loss of stage one and two models
respectively, and m indicates the scale corresponding to different
STFT configurations. In this paper, we set M = 3 with number of
FFT bins ∈ {512, 1024, 2048}, hop sizes ∈ {240, 480, 960}, and
window lengths ∈ {480, 960, 1920} respectively.

3. EXPERIMENTS
3.1. Dataset
Speech and noise data are all taken from DNS4 track2 personalized
dataset and DNS5 dataset. We simulate 150,000 RIR clips by image
method3 and the RT60 of RIRs ranges from 0.1s to 1.2s. Totally we
simulate about 2,000 hours of data for the model training of the two
tracks while 170 hours are used as a subset for quick ablation study
on dev test set. The model structures for the two tracks are the same
but trained using different sets on the official Github.

3.2. Training Setup
During the model training, the parameters of Resnet34 speaker en-
coder are always frozen. The learnable fusion module is a 256-
dimensional Dense layer to combine 256-dimensional Resnet34 em-
bedding and 160-dimensional Fbank (80 means and 80 standard de-
viations). The configuration of the speech enhancement model is
exactly the same as that of TEA-PSE 2.0 [2]. The subband split
and merge is based on PQMF and the number of subbands is set to
4. Window length and hop size are 20ms and 10ms respectively.
The final submitted model has 12.49M parameters in total, where
the parameters of the Resnet34 part is 6.63M. The parameters of the
MetricGAN discriminator are not included here as it is discarded
during inference. The multiply-accumulate operations (MACs) per
second are 8.5G. The average real-time factor (RTF) per frame is
0.48, tested on Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz using
a single thread for ONNX inference testing.

3.3. Results and analysis
We first perform a quick ablation study based on the models trained
using the 170-hour subset. Stage training test results on the oracle
TEA-PSE2.0 model is shown in Table 1. We can see that the best
performance is achieved when we first train the stage-one model,

3https://github.com/phecda-xu/RIR-Generator

Table 1. Training strategy on the dev test set.(P.835 pDNSMOS)
Track 1 headset Track 2 non-headset

SIG BAK OVRL SIG BAK OVRL
Noisy 3.98 2.48 2.68 4.14 2.34 2.68
Stage-1 3.75 3.82 3.24 3.85 3.95 3.41
Stage-2 3.72 3.94 3.28 3.80 4.09 3.43
Joint 1&2 3.81 3.99 3.38 3.92 4.17 3.56

Table 2. Ablation study on the dev test set. (P.835 pDNSMOS)
Track 1 headset Track 2 non-headset

SIG BAK OVRL SIG BAK OVRL
Noisy 3.98 2.48 2.68 4.14 2.34 2.68
Stage-2 only 3.84 3.65 3.23 3.97 3.74 3.40
+Fbank 3.87 3.71 3.27 3.98 3.84 3.45
+Multi-loss 3.84 3.73 3.27 3.97 3.82 3.43
+PESQ 3.83 3.76 3.28 3.98 3.88 3.47
+OVRL 3.85 3.72 3.27 3.99 3.81 3.45
+SIG&BAK 3.88 3.74 3.30 4.01 3.89 3.50

Table 3. DNS5 challenge official results for our system.
Track 1 headset

SIG BAK OVRL WACC SCORE
Noisy 3.76 1.22 1.22 0.843 0.449
Baseline p 3.20 2.67 2.34 0.687 0.511
NAPSE 3.58 2.87 2.69 0.758 0.590

Track 2 non-headset
SIG BAK OVRL WACC SCORE

Noisy 3.83 1.22 1.24 0.857 0.459
Baseline p 3.22 2.68 2.38 0.727 0.537
NAPSE 3.60 2.78 2.58 0.769 0.581

then freeze the stage-one model to train the stage-two model, and fi-
nally, jointly train the both stage models. We then discard the stage-
one model and use the stage-two model only for a quick investiga-
tion, as shown in Table 2. We can see that the use of Fbank for
speaker embedding fusion, multi-loss, and perceptual metric-based
adversarial learning are also beneficial to the performance. Specif-
ically, for the use of perceptual metrics, using MetricGAN-U to es-
timate DNSMOS SIG and BAK is better than estimating DNSMOS
OVRL and PESQ. Here DNSMOS SIG and BAK are estimated each
using a separate MetricGAN-U. Table 3 shows the final subjective
listening results of the challenge. Our system is tied for 1st place in
Track 1 and ranked 2nd in Track 2 according to the final score.
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