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ABSTRACT
Motivated by the increasing application of low-resolution
LiDAR recently, we target the problem of low-resolution
LiDAR-camera calibration in this work. The main chal-
lenges are two-fold: sparsity and noise in point clouds. To
address the problem, we propose to apply depth interpola-
tion to increase the point density and supervised contrastive
learning to learn noise-resistant features. The experiments on
RELLIS-3D demonstrate that our approach achieves an aver-
age mean absolute rotation/translation errors of 0.15cm/0.33
°on 32-channel LiDAR point cloud data, which significantly
outperforms all reference methods.

Index Terms— low-resolution point cloud, LiDAR-
camera calibration, supervised contrastive learning, image
interpolation

1. INTRODUCTION

Driven by the development of LiDAR technology, the appli-
cation scenarios of low-resolution LiDAR devices are largely
expanded in recent years, such as autonomous driving[1],
geoscience[2], remote sensing[3], mobile robotics[4], etc. To
acquire an accurate and informative perception of scanned
targets or environments, LiDAR devices are often fused with
cameras to utilize rich information of images. The basis of
LiDAR-camera fusion is extrinsic calibration, i.e., estimating
a relatively rigid body transformation from LiDAR coordi-
nates to camera coordinates, which has been long studied.
Conventional calibration methods[5, 6, 7, 8, 9, 10] are mostly
based on explicit targets in a scene, hand-crafted features,
or labels of data to build correspondences between point
clouds and images, thus are often limited by laborious hu-
man interventions and/or applied environments. Recognizing
these limitations, recently, deep-learning-based calibration
approaches[11, 12, 13, 14, 15] are proposed, which automati-
cally learn features from sensed data and perform calibration
in an end-to-end manner. Since the feature learning heavily
depends on the quality of data, most works lay the founda-
tion upon highly accurate and noiseless point clouds(Fig. 2)
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sensed by high-resolution LiDAR, and thus suffer from large
performance degradation in low-resolution LiDAR scenarios.

In this work, we take the state-of-the-art method[15] as
the backbone to apply two effective techniques to enhance
the performance of low-resolution LiDAR-camera calibra-
tion. We first identify two major challenges to low-resolution
LiDAR-camera calibration: sparsity and noise, as shown in
Fig. 2. To address the sparsity problem, we apply depth in-
terpolation to increase the density of the point cloud, which
inevitably introduces more noise to the point cloud. Then, to
address the inherent and introduced noise, we apply super-
vised contrastive loss on the backbone to learn noise-resistant
features for calibration. The extensive experiments on public
datasets demonstrate that our approach outperforms all refer-
ence methods on low-resolution point clouds by a large mar-
gin, which shows strong evidence that our approach is highly
effective in addressing the low-resolution LiDAR-camera
calibration problem. Our contributions are summarized as
follows:

1. We propose two effective techniques to enhance the
deep-learning-based, automatic targetless LiDAR-camera
calibration in the low-resolution LiDAR scenario. To the
best of our knowledge, this is the first work that targets the
low-resolution LiDAR-camera calibration problem.

2. We demonstrate that supervised contrastive loss can
be applied to learn noise-resistant features for LiDAR-camera
calibration.

3. Our approach achieves state-of-the-art performance
for low-resolution LiDAR-camera calibration, which sets a
strong baseline for this task.

2. METHODOLOGY

We use a state-of-the-art method[15] as the backbone of our
approach, as shown in Fig. 1. In the inference stage, [15] runs
in two modes: single-stage and multi-stage. In single-stage
mode, a single model is trained for a single miscalibration
range. In multi-stage mode, multiple models are trained sep-
arately for different miscalibration ranges, and the input is

ar
X

iv
:2

21
1.

03
93

2v
1 

 [
cs

.C
V

] 
 8

 N
ov

 2
02

2



LiDAR Point Cloud

Mis-Calibrated LiDAR 
Point Cloud

Random Mis-
calibration Jitter

Depth Image

RGB Image

Depth 
CNN

RGB 
CNN

Correlation Layer

Cost Volume

𝑅!

𝑇!

𝑅"#; 𝑇"#

𝐿$%&'(

𝐿$

𝐿!

Rotation Features

Translation Features

𝑅! Predicted Rotation Parameters

𝑇! Predicted Translation Parameters

𝑅"# Ground Truth Rotation Parameters

𝑇"# Ground Truth Translation Parameters

𝐿$%&'( Calibration Loss 𝐿$ Supervised Contrastive Loss Cloud Distance Loss𝐿!

Max-pooled 
Depth Image

Fig. 1. The whole training pipeline of our approach. Given a pair of an RGB image and a miscalibrated point cloud, two
CNNs are used to extract features from the RGB image and the max-pooled depth image. Then the extracted features are fed
into a correlation layer[16] to construct a cost volume for extracting rotation features and translation features which are
later used to predict rotation parameters and translation parameters. The rotation parameter is a four-dimensional vector that
represents the rotation quaternion. The translation parameter is a three-dimensional translation vector. In the training process,
three losses are applied: calibration loss minimizes the distance between predicted calibration parameters and the ground
truth. Cloud distance loss minimizes the distance between calibrated point cloud(using predicted calibration parameters) and
the ground truth point cloud. Supervised contrastive loss enhances the learned rotation features and translation features to be
noise-resistant.

Fig. 2. The visual comparison of point clouds from high-
resolution LiDAR and low-resolution LiDAR. The point
cloud is projected to the image plane and plotted as an over-
lay layer. The data is from RELLIS-3D[17]. Left: 64-channel
LiDAR. Right: 32-channel LiDAR. Blue box: sparse region.
Red box: noisy region.

calibrated sequentially by models of higher ranges to lower
ranges.

We first identify two main problems for low-resolution
LiDAR-camera calibration resulting from point clouds: spar-
sity and noise. Fig. 2 shows a visual comparison of point
clouds sensed by a 32-channel LiDAR and a 64-channel Li-
DAR. Higher sparsity and more noise in low-resolution point

clouds lead to more difficulties for calibration since the RGB
images and depth images are less correlated, consequently
making the constructed cost volume less informative.

Depth interpolation. To address the sparsity problem, we
propose to apply interpolation to depth images before feature
extraction. There are a large variety of image interpolation
methods, and we choose to use max-pooling, which shows
the highest calibration accuracy in Section3. Given a depth
image with h height and w width and output size of ĥ height
and ŵ width, the stride and kernel size are set to h/ĥ, w/ŵ
and h − (ĥ − 1) ∗ (h/ĥ), w − (ŵ − 1) ∗ w/ŵ, respectively,
following the widely used adaptive max-pooling design[18].

Supervised contrastive learning. Depth interpolation in-
evitably introduces more noise to the point cloud since a large
amount of fake 3d points are added. To learn noise-resistant
features, we hypothesize that learned features should satisfy
three conditions: 1. Rotation features(Fig. 1, red block) only
retain information related to rotation parameters. 2. Trans-
lation features(Fig. 1, purple block) only retain information
related to translation parameters. 3. Both rotation and trans-
lation features do not retain data-dependent(either image or
point cloud)information to avoid over-fitting.

Following the three conditions, we propose to add super-
vised contrastive loss(SCL)[19] in addition to calibration loss



and cloud distance loss(both defined in original paper[15]).
SCL is defined as

Lsup =
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
exp (zi · zp/τ)
exp (zi · za/τ)

(1)

where P (i) ≡ {p ∈ A(i) : ỹp = ỹi} is the set of indices
of all positives samples distinct from i within the mini-batch,
|P (i)| is its cardinality, and zi is the feature of the correspond-
ing sample, as detailed in [19]. Despite its complicated math-
ematical form, SCL can be implemented as a function that
takes in a batch of features and the same number of numerical
labels while outputting a singular loss value, i.e.,

loss = SCL([f1, · · · , fb], [l1, · · · , lb]) (2)

where fi is the feature, li is the corresponding label, and
b is the batch size, as implemented in [20]. Then in the
training process, features with the same labels are pulled to-
gether while simultaneously, features with different labels are
pushed apart.

To adapt SCL for enhanced feature learning, we generate
features and labels in the following strategy for each batch:
with a batch size of b, given a batch of training samples con-
taining 4-tuples (Ik, Pk, Rk, Tk) of RGB image, point cloud,
random rotation, and random translation, 1 ≤ k ≤ b, we
first compose a new batch as inputs consisting of all possible
4-tuple combinations of Ik, Pk, Rk, Tk while always keeping
Ik and Pk paired, as shown in Table 1. As such, the new batch
size is b3. Then we assign two groups of labels to generated
rotation features Rf

k and translation features T f
k , respectively.

For rotation features, the same labels are assigned if and only
if they have the same rotation parameters. For translation fea-
tures, their labels are assigned in a similar manner to corre-
spond to translation parameters. Then, two SCL functions are
used to take in rotation and translation features and the cor-
responding labels, respectively. Through this process, three
conditions can be satisfied in the following sense: 1. Rota-
tion features Rf are pushed closer if and only if their rotation
parameters R are the same. 2. Translation features T f are
pushed closer if and only if their translation parameters T are
the same. 3. Rotation features and translation features are less
affected by solely changing the input images and point cloud
pairs without changing the calibration parameters.

3. EXPERIMENTS

We use RELLIS-3D[17] dataset for evaluation. RELLIS-3D
contains point clouds sensed by a 32-channel LiDAR and
64-channel LiDAR in off-road environments. 32-channel
point clouds are treated as low-resolution data. The split
of the dataset follows the official split in [17], with 7800
training samples, 2413 validation samples, and 3343 testing
samples. The training of LCCNet is following the setups
in the original paper[15], and the miscalibration ranges are

Composed inputs Features Labels
Image PC RO TR RO TR RO TR
I1 P1 R1 T1 Rf

1 T f
1 1 1

I1 P1 R1 T2 Rf
2 T f

2 1 2
... ... ... ... ... ... ... ...
I1 P1 R2 T1 Rf

b+1 T f
b+1 2 1

... ... ... ... ... ... ... ...
I2 P2 R1 T1 Rf

b∗b+1 T f
b∗b+1 1 1

... ... ... ... ... ... ... ...
Ib Pb Rb Tb Rf

b∗b∗b T f
b∗b∗b b b

Table 1. The composed input batch and assigned labels for
supervised contrastive learning. Original batch size: b. PC:
point cloud. RO: rotation. TR: translation. Ik: kth image
in the batch. Pk: kth point cloud. Rk: kth random rotation
parameters. Tk: kth random translation parameters. Rf

k : kth

generated rotation feature. T f
k : kth generated translation fea-

ture.

set to 150cm/20◦, 100cm/10◦, 50cm/5◦, 20cm/2◦, and
10cm/1◦, which is consistent with [15] and [13]. The eval-
uation metrics are mean absolute translation error (x, y, z),
mean absolute rotation errors (roll, pitch, yaw), averaged
translation error (x + y + z)/3 and averaged rotation error
(roll + pitch+ yaw)/3.

Quantify calibration performance degradation. We
first train two multi-stage LCCNet[15] on point clouds of
32 channels and 64 channels, respectively. The experiment
results are shown in Table 2. The average translation error
and rotation error increase two to four times on 32-channel
data compared with the same model trained on 64-channel
data.

Channel X Y Z Roll Pitch Yaw
64 0.66 0.71 0.25 0.12 0.14 0.09
32 2.6 2.6 2.78 0.22 0.16 0.27

Table 2. Quantified performance degradation on low-
resolution(32-channel) LiDAR. Unit: cm or °

Depth interpolation. We compare max-pooling against
three candidate image interpolation methods: average-pooling,
linear interpolation, and nearest neighbor interpolation, as
well as the original LCCNet approach. The single-stage [15]
is trained at the miscalibration range of 150cm/20◦. The ex-
periment results are shown in Table 3. The model trained with
max-pooling achieves the lowest calibration errors among all
interpolation methods. We choose to employ max-pooling to
interpolate depth images in the following experiments. Be
noted the rotation errors of all four interpolation methods
are slightly higher than the original model, which can be at-
tributed to the fake points added to the depth image through
interpolation.



original linear
average
pooling

max
pooling

nearest
neighbour

TR 54.13 71.78 43.00 40.84 57.99
RO 1.02 3.95 4.00 3.34 4.23

Table 3. Comparison against various image interpolation
methods. TR: averaged translation error(unit: cm). RO: aver-
aged rotation error (unit: °).

Supervised contrastive learning. We validate the effec-
tiveness of SCL by training single-stage model on all five
different miscalibration ranges. As experiment results in Ta-
ble 4 show, with max-pooling applied, the averaged transla-
tion and rotation errors at most ranges are significantly re-
duced compared to the original approach. In addition, with
SCL being applied, the calibration error is further reduced by
3.95cm/0.25°on average. The experiment results validate our
hypothesis that SCL can enhance feature learning of calibra-
tion.

range original MP MPSCL
150/20 54.12/1.02 40.84/3.34 26.86/2.61
100/10 17.13/0.64 11.82/0.91 9.52/0.61

50/5 8.78/0.50 5.08/0.36 3.17/0.25
20/2 4.05/0.41 3.17/0.23 1.75/0.18
10/1 2.11/0.21 0.98/0.17 0.84/0.12

Table 4. Calibration performance comparison at different
miscalibration ranges. Original: the original model. MP:
with max-pooling applied. MPSCL: with both max-pooling
and SCL applied. Unit: cm/°

Comparison against reference methods. We further
evaluate the performance of our approach(multi-stage model
trained at ranges of 150cm/20◦, 100cm/10◦, 50cm/5◦,
20cm/2◦, and 10cm/1◦ with max-pooling and SCL applied,
denoted as MPSCL) by comparing it against multiple ref-
erence methods. The miscalibration range for evaluation
is set to 150cm/20◦. The reference methods are original
multi-stage LCCNet, Regnet[13], and CalibDNN[14](For
CalibDNN, the range is set to 20cm/10◦ to be consistent with
original work). The experiment results are shown in Table 5.
MPSCL achieves the highest performance on all evaluation
metrics. Compared with LCCNet, the averaged translation er-
ror and rotation error are reduced by 87%(2.66cm to 0.33cm)
and 28%(0.21°to 0.15°), respectively. Compared with the
two reference methods, the calibration errors of MPSCL are
at least one order of magnitude lower, which is strong evi-
dence that MPSCL can effectively perform LiDAR-camera
calibration in low-resolution LiDAR scenarios.

Performance on subsampled point clouds. To our
knowledge, there is no public dataset for the LiDAR-camera
calibration problem with a resolution below 32 channels.
To evaluate the performance of our approach in extreme

RegNet CalibDNN LCCNet MPSCL
X 58.70 10.43 2.60 0.23
Y 32.30 14.59 2.60 0.45
Z 50.73 10.77 2.78 0.30

Average 47.24 11.93 2.66 0.33
Roll 4.00 1.11 0.22 0.14
Pitch 8.23 4.15 0.16 0.13
Yaw 5.42 2.05 0.27 0.17

Average 5.88 2.44 0.21 0.15

Table 5. The performance evaluation of MPSCL against ref-
erence methods. Unit: cm or °.

cases, we perform subsampling on point clouds to simulate
lower-resolution LiDAR scenarios. We test with three sub-
sampling rates: 2, 4, and 8. The point cloud is uniformly
subsampled. The miscalibration range is set to 150cm/20◦.
The experiment results are shown in Table 6. MPSCL again
shows significantly higher performance than all reference
methods. Even at a subsampling rate of 8, the averaged
translation/rotation errors are only 4.28cm/1.24°. Compared
with LCCNet, the average reduction in average transla-
tion/rotation errors is 19.43cm/0.03°. Compared with RegNet
and CalibDNN, the average reduction is 51.09cm/5.25°and
7.34cm/0.91°, respectively. This is further evidence that MP-
SCL can well address the LiDAR-camera calibration problem
in low-resolution LiDAR scenarios.

Subsample rate 2 4 8
RegNet 49.71/5.96 54.19/6.21 57.80/6.76

CalibDNN 11.45/1.55 10.31/1.73 8.40/2.65
LCCNet 4.23/0.57 22.73/0.51 39.45/2.20
MPSCL 1.21/0.04 2.65/1.91 4.28/1.24

Table 6. Performance evaluation on subsampled point clouds.
Unit: cm/°

4. CONCLUSION

We propose an effective approach for low-resolutioin LiDAR-
camera calibration. We first identify two main challenges in
this problem resulting from low-resolution data: sparsity and
noise. Then, we take [15] as the backbone to apply max pool-
ing to interpolate depth images and supervised contrastive
loss to tackle noises, which eventually leads to a highly effec-
tive approach for low-resolution LiDAR-camera calibration.
The extensive experiments on RELLIS-3D against reference
methods demonstrate that our approach can achieve superior
performance in calibration, even for extreme cases.
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