
ar
X

iv
:2

30
6.

08
13

3v
2

 [
ee

ss
.A

S]
 5

 S
ep

 2
02

3

LARGE-SCALE LANGUAGE MODEL RESCORING ON LONG-FORM DATA

Tongzhou Chen*, Cyril Allauzen*, Yinghui Huang, Daniel Park, David Rybach, W. Ronny Huang,

Rodrigo Cabrera, Kartik Audhkhasi, Bhuvana Ramabhadran, Pedro J. Moreno, Michael Riley

Google LLC, USA

ABSTRACT

In this work, we study the impact of Large-scale Language Mod-

els (LLM) on Automated Speech Recognition (ASR) of YouTube

videos, which we use as a source for long-form ASR. We demon-

strate up to 8% relative reduction in Word Error Eate (WER) on

US English (en-us) and code-switched Indian English (en-in) long-

form ASR test sets and a reduction of up to 30% relative on Salient

Term Error Rate (STER) over a strong first-pass baseline that uses a

maximum-entropy based language model. Improved lattice process-

ing that results in a lattice with a proper (non-tree) digraph topology

and carrying context from the 1-best hypothesis of the previous seg-

ment(s) results in significant wins in rescoring with LLMs. We also

find that the gains in performance from the combination of LLMs

trained on vast quantities of available data (such as C4 [1]) and

conventional neural LMs is additive and significantly outperforms

a strong first-pass baseline with a maximum entropy LM.

Index Terms: Large-scale language models, N-best rescoring, Fine-

tuning

1. INTRODUCTION

Large-scale language models (LLM), such as as BERT [2], T5 [3],

GPT-3 [4], and PaLM [5], have proven to be successful in natural

language processing (NLP) tasks such as, Question Answering, Text

Summarization, and other Zero Shot learning applications. These

models are trained on vast amounts of text data and have yielded

state-of-the-art results across several NLP and search tasks. How-

ever, there is very limited work on the use of these LLMs in Auto-

mated Speech Recognition (ASR).

Recent research has focused on fine-tuning GPT, GPT-2 and

BERT models with small amounts of in-domain data showing that

they tend to outperform the performance of conventional Neural

LMs such as transformer LMs trained on the same data [6]. The

authors in [7] propose the use of pseudo-likelihood scores and show

that rescoring N-best hypotheses from an ASR model can yield sig-

nificant wins on Librispeech but there is always a trade-off between

in-domain modeling and fine-tuning a model trained with far more

text. An alternate approach to directly predict the oracle hypothesis

was originally proposed in [8] and used in [9] to re-rank the N-best

hypothesis using scores from BERT.

In this paper, we scale the use of LLMs to ASR on YouTube

videos, which we use as a source for long-form ASR. We show the

∗Equal Contribution.

© 2023 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.

importance of lattice quality and contextual augmentation for long-

form ASR and compare the performance of LLMs with other neural

and maximum entropy based LMs using two metrics: Word Error

Rate (WER) and Salient Term Error Rate (STER).

2. RELATED WORK

Several methods to incorporate LMs in end-to-end sequence mod-

els have been proposed in the literature. Decoding algorithms

[10, 11, 12] employ fusion strategies, such as shallow [13], cold [14],

deep [15] and component [16] fusion. However, the wins from in-

corporating LMs in this fashion have been relatively small for large

scale ASR [17]. The Hybrid Autoregressive Transducer (HAT)

model introduced in [18] for encoder-decoder models, allowed for

the computation of an internal language model component that can

be quantified and appropriately interpolated with an external lan-

guage model (ELM). The density ratio method proposed in [19]

offers a theoretically grounded solution to leverage an external

language model while separating out the acoustic likelihood score

and the internal LM score on the source domain. This modular

framework lends itself to principled approaches of LM rescoring

and adaptation thus overcoming some of the shortcomings of the

aforementioned LM integration strategies [18, 20].

ASR systems perform best when the training data is matched

to the target domain. However, end-to-end ASR models are trained

on large quantities of available speech data and the LM is trained

on the limited text data available in the target domain, thus enabling

cross-domain transfer. Alternatively, Large LMs are trained on vast

quantities of text and subsequently fine tuned on target domain text.

In both scenarios, finding an optimal combination of the end-to-end

ASR model, with its implicitly trained internal LM and the external

LM, is critical for best performance in the target domain. Neural

Oracle Search leverages HAT factorization for LM rescoring with

an external LM to directly pick the oracle hypothesis [8], while oth-

ers have explored on-device neural and biasing LM integration [21]

and compared rescoring and deliberation [22], demonstrating wins

across all tasks.

In this paper, we study the impact of LLMs within the HAT

framework for long-form ASR. Using data from two different

sources, US English (en-us) and Indian English (en-in) which is

heavily code-switched with Hindi and other Indian languages, we

show that wins of up to 8% relative can be obtained in long-form

ASR while achieving a reduction of up to 30% relative on Salient

Term Error Rate (STER) over a strong first-pass baseline that uses a

maximum-entropy based language model. We also demonstrate the

importance of improved lattice quality that results in a lattice with a

proper (non-tree) digraph topology and carrying context from the 1-

best hypothesis of the previous segment(s) obtain best performance

with LLMs. We find that both Text-to-Text Transfer Transformer

http://arxiv.org/abs/2306.08133v2

(T5) [3] and its multilingual counterpart, MT5 [23] are complemen-

tary to conventional neural LMs and outperform a strong first-pass

baseline that utilizes a maximum entropy LM.

3. LARGE LANGUAGE MODELS

Several LLMs have been proposed to date with significant improve-

ments on varied NLP tasks. In this work, we mainly focus on two

LLMs, T5 and PaLM, ranging in size from 3B to 540B parameters,

summarized in Table 1. The conventional neural LM used for com-

parisons is a conformer LM described in Section 4.4 and comprising

of 70M parameters.

Conventional
LMs

Size T5 [3] Size MT5 [23] Size PaLM [5] Size

Neural LM 70M S 60M S 8B
MaxEnt 4.5B M 220M M 62B

L 770M L 540B
XL 3B XL 3.7B
XXL 11B XXL 13B

Table 1: Comparison of LM sizes.

3.1. T5 and PaLM

Built on an encoder-decoder transformer-based architecture, T5 op-

timizes the log-likelihood of the target text given input to learn a

mapping from the input to target.

While T5 is pretrained on the span corruption task, LM and Pre-

fix LM are two fine-tuning tasks used for language modeling. The

LM task predicts the target sequence with null context input while

the prefix LM task randomly splits the text into two halves, using the

first half as the input to predict the second half. These fine-tuning

tasks enable direct computation of log-likelihood of the target text,

instead of the estimation of a pseudo log-likelihood as proposed ini-

tially in [2] for masked LMs. Thus, given a text sequence Y , similar

to the LM task, we can compute its T5 score ST5(Y) by using an

empty string ǫ as input and the text sequence Y as target, with the

following equation:

ST5(Y) = logPT5(Y |ǫ; ΘT5). (1)

For longer sequences, we can make better use of the previous con-

text and compute the score in a semi-autoregressive fashion. There-

fore, Y can be split into multiple segments Y1 . . . YS and the log-

likelihood of the current segment can be computed using the previ-

ous segment’s context:

ST5(Y) =

S∑

s=1

logPT5(Ys|Ys−1; ΘT5), (2)

where Y0 being ǫ.

PaLM is an autoregressive LM with a decoder-only architec-

ture. Hence the score of a text sequence can be computed straight-

forwardly.

3.2. Integration with ASR Models

In this work, we use a first-pass model based on the conformer ar-

chitecture [24] that uses HAT factorization [18]. Not only does HAT

model provide a posterior score SHAT(Y |X), but it also estimates the

internal LM (ILM) score. As mentioned in Section 2, when interpo-

lating an external LM during rescoring or shallow fusion, estimating

and subtracting the internal LM score yields wins. Thus, inference

search maximizes:

S(Y,X) = SHAT(Y |X) − µSILM(Y) + νSELM(Y), (3)

where µ and ν are tunable hyperparameters.

4. EXPERIMENTS

4.1. Data

We conduct experiments with data from two language locales, en-

us and en-in. The multi-domain ASR model used in this paper

is trained on several thousand hours of long-form utterances de-

rived from YouTube videos[25] and short-form utterances that are

anonymized, hand-transcribed and are representative of Google’s

Voice Search traffic [26]. The test sets contain long-form utter-

ances derived from 30-minute-long YouTube videos. We set aside

a subset containing 5% of the test utterances as the development test

to tune the hyperparameters.

The pre-training corpus used to train T5 is the publicly avail-

able, Colossal Clean Crawled Corpus(C4), while MT5 is pre-trained

on the multilingual variant, MC4 [23]. To address code-switching

seen in en-in [27], text data consisting of Indian English and Hindi

Wikipedia and CCNet [28] collectively referred to as WEBDOC, is

used. This corpus consists of 170M sentences yielding 2.9B word

tokens. We use 90% data for training and 10% data for validation.

All data in mixed writing systems is transliterated to Latin to be con-

sistent with ASR model training data used for en-in.

4.2. Training Large Language Models

We experimented with T5 and MT5 models of sizes XL and XXL.

Both T5 and MT5 models were pre-trained for 1M steps using the

span corruption task and then fine-tuned for 100K steps using the

prefix LM task on C4/MC4. To address the heavy code-switching

prevalent in en-in and the lack of Hindi data in MC4 corpus, we

fine-tune MT5 on the LM task for an additional 300k steps on the

WEBDOC corpus.

PaLM models with three different sizes were trained as de-

scribed in [5] for the en-us task. The corpus used to train these

models consisted of filtered web pages, books, Wikipedia, news

articles, source code, and social media conversations. We use these

pre-trained models as-is with no additional fine-tuning.

4.3. ASR Models

We use a first-pass ASR model based on the conformer architec-

ture [24] that uses HAT factorization [18]. The encoder consists of

a convolution subsampling layer and 17-layers of conformer blocks.

A conformer block is composed of a feed-forward module, multi-

headed self-attention with relative positional encoding module, a

convolution and a final feed-forward module, stacked together. The

configuration used in this work has an encoder dimension of 512, 8

attention heads, a convolution kernel size of 32 and a decoder dimen-

sion of 640 [24]. The decoder at label yu is only conditioned on the

previous two labels yu−1 and yu−2, with their embeddings concate-

nated and projected [29]. The models are trained on 80-dimensional

log-mel filter bank coefficients and predict word-piece targets (4096

for en-us and 8192 for en-in). The choice of these parameters was

determined by sweeping for best performance within the expected

model size.

4.4. Neural and Maximum-Entropy based Language Models

In order to better understand the value of LLMs in ASR, we trained

two state-of-the-art LMs, a conventional neural LM and a Maximum

Entropy based LM. The conventional Neural LM is a small, unidi-

rectional, conformer LM (CLM) with 70M parameters, originally

designed for on-device rescoring [21]. It consists of 12 causal con-

former layers, each with a dimension of 384, a feedforward layer di-

mension of 2048, a convolution kernel of size 15. We use 4-headed

self attention with a left context size 31. The model is trained on the

same data as the LLMs to predict the same word-piece targets as the

first-pass ASR model. Thus, for en-us, we trained it on C4 and for

en-in, we trained it on WEBDOC to match the fine-tuning corpus of

MT5. The Maximum Entropy based (MaxEnt) LM [30, 31] is a log

linear model based on N-gram and skip-gram word contexts, with a

size of 4.5B parameters and is comparable to the size of the T5/MT5

XL models. It is also trained on the same data as the conventional

Neural LM.

4.5. Decoding and Rescoring

Decoding is performed by a time-synchronous beam search using the

breadth-search expansion strategy [32] where the number of active

hypotheses at each frame is bounded by a beam size k. A VAD-based

segmenter [33] runs in parallel to the beam-search decoder. When

the decoder receives an end-of-segment signal from the segmenter,

a segment lattice is generated from the currently active hypotheses.

If present, a rescoring LM is applied to this segment lattice, with

the 1-best hypotheses from previous segments optionally provided

as context. Only the best hypothesis in the lattice (eventually after

rescoring) is carried forward in the beam-search for the next seg-

ment. The final utterance lattice is obtained by concatenating all the

segment lattices.

When using an ASR model with unlimited label context, each

hypothesis within the beam encodes the full history from the begin-

ning of the utterance. Hence, the segment lattice is a trie with a total

number of paths (e.g. hypotheses) bounded by the beam size k.

When using an ASR model where the label context is bound

by n [34], beam-search hypotheses sharing the same label context

of length n will correspond to the same state in the segment lat-

tice. This results in lattice with a proper (non-tree) digraph topology

where the number of paths can grow up to exponentially in the num-

ber of states. This was shown to lead to a significant improvement

in lattice quality: lattice diversity improvement and oracle WER re-

duction [34].

The ASR models described in section 4.3 used limited label con-

text with n = 2. However when combining these models with the

conformer LMs from section 4.4 during the beam search using HAT

fusion results in dramatic increase of the label context limit mak-

ing the resulting combined model to effectively have unlimited label

context.

5. RESULTS

5.1. Lattice Quality

The success of a rescoring approach crucially depends on the quality

of the hypotheses of the first-pass beam-search decoder. To assess

the lattice quality, we computed metrics such as the N -best oracle

WER and the average number of paths/hypotheses per segment for

our baseline systems on the en-us and en-in development sets as re-

ported in Table 2.

dev Oracle WER WER #paths/segment
en-us en-in en-us en-in en-us en-in

Baseline 7.3 12.8 12.2 17.2 4e20 4e13
No state merging 8.8 13.1 12.2 17.2 5.7 5.8
Neural LM fusion 8.4 11.0 11.6 15.6 5.2 5.7

Table 2: Lattice quality on the en-us and en-in dev sets.

As the contribution to first-pass model’s posterior and internal

LM at label yu depends only on the previous two labels, our baseline

systems can leverage the state merging benefits of limited context

models described in Section 4.5 as demonstrated by the relatively

low oracle WER and high number of paths per segments.

Lattice quality can be improved by improving first-pass model-

ing by integrating a neural LM in the beam-search decoding using

HAT fusion. Table 2 shows this results in a significant improvement

in 1-best WER. However, this causes the loss of the state merging

benefits and results in an increase of oracle WER in en-us. However,

this is still an significant improvement compared to disabling state

merging in the baseline systems.

5.2. Comparison of LMs

In this Section, we consider the impact of LM integration on the en-

us task. Table 3 demonstrates the value of providing longer context

to Large LMs. Each row contains the result of rescoring with the

T5 XXL model when carrying over contexts of different lengths,

i.e., of carrying over the 1-best hypotheses from different number of

previous segments. We observe that carrying over previous context

outperforms no context. However, longer contexts do not seem to

provide additional wins. The rest of this paper thus uses contextual

information from just the previous segment.

WER dev

Baseline 12.2
+ T5 rescoring, carrying 0 segment 11.6
+ T5 rescoring, carrying 1 segment 11.5
+ T5 rescoring, carrying 2 segments 11.5

Table 3: WER comparison on the en-us test set for different lengths

of carried over context

Table 4 presents the rescoring and fusion results on the en-us de-

velopment and evaluation test sets for various LMs. First we observe

that a small Neural LM edges out over the performance of a Maxent

LM. Moreover, though the T5 S model, whose size is slightly smaller

than the NLM, was slightly behind NLM, increasing the size of T5

leads to better results. It is also interesting to note that the NLM

and T5 XXL models are complementary, as fusion can give a bet-

ter 1-best WER. In addition, we experimented with more enormous

PaLM LMs and they are able to brings the power of larger capacity

and large amounts of training text, yielding better results than T5.

5.3. Code-switching Task

In this Section, we present the performance of LLMs on a more chal-

lenging en-in task dominated by heavy code-switching.

Although MT5 is meant to be a multilingual LM, the amount

of training data from the different languages is unbalanced. The

training data consists of 5.67% English, but only 1.21% is Hindi

in the Devanagari script [23]. This imbalance between en-in and

WER dev eval

Baseline 12.2 16.1
+ MaxEnt rescoring 12.2 16.4
+ NLM rescoring 11.8 15.8
+ T5 S rescoring 11.9 15.9
+ T5 M rescoring 11.7 15.8
+ T5 XL rescoring 11.6 15.7
+ T5 XXL rescoring 11.5 15.7
+ PaLM S rescoring 11.5 15.5
+ PaLM M rescoring 11.3 15.4
+ PaLM L rescoring 11.3 -
+ NLM fusion 11.6 15.6
+ NLM fusion & T5 XXL rescoring 11.4 15.5

Table 4: en-us WER comparison between T5 and other LMs

Hindi fails to capture the frequent code switches between English

and Hindi predominant in the en-in test sets. To address this issue,

we finetune both XL and XXL MT5 models on the WEBDOC cor-

pra with the LM task. We evaluate the raw MT5 model and these

fine-tuned models on the en-in development set to study the effect of

fine-tuning. These results are tabulated in Table 5.

en-in dev MT5 XL MT5 XXL

Baseline 17.2
Raw 16.6 16.8
Fine-tuned 16.1 16.3

Table 5: WER comparison on en-in dev set with raw and fine-tuned

MT5 models of sizes XL and XXL

It can be seen that rescoring with the fine tuned models outper-

forms rescoring with the raw MT5 model. This can be attributed to

the lack of sufficient Hindi data in the MC4 corpus which can be

fixed with data balanced fine-tuning. When compared to en-us, the

wins from LLMs on en-in are less. We hypothesize that this could be

related to the small size of the WEBDOC corpus compared to MC4,

in line with the data-hungry nature of LLMs [35, 36].

5.4. Comparison of LMs on the code-switching task

WER dev eval

Baseline 17.2 16.4
+ MaxEnt rescoring 16.5 15.9
+ NLM rescoring 16.2 15.4
+ MT5 XL rescoring 16.1 15.2
+ NLM fusion 15.6 15.0
+ NLM fusion & MT5 XL rescoring 15.4 14.6

Table 6: en-in WER comparison between MT5 and other LMs

Table 6 presents the rescoring results from various LMs. The

MT5 XL model is the best performing model with a WER reduction

of 7.3% relative on the evaluation test set. On the other hand, the

Conformer LM when used in shallow fusion in the first-pass shows

additional wins. Since we fine-tuned MT5 on the same training data

as Conformer LM, we also report the perplexity of MT5 and Con-

former LM on the 10% validation part of WEBDOC. MT5 has a log

perplexity per word of 4.15, slightly higher than the Conformer LM

at 2.98 and MaxEnt at 3.69.

We observe that the Conformer LM and MT5 are complemen-

tary and the combination results in a best WER reduction of 8%

relative.

6. ERROR ANALYSIS

To analyze the effectiveness of large LM, we select unigrams and

bigrams with the highest Term Frequency Inverse Document Fre-

quency (TF-IDF) values from the evaluation test sets (salient terms)

for the two languages studied in this paper. In general, such terms

capture the topic presented in the video. On the one hand, they are

important for indexing or information retrieval; on the other hand,

they are more difficult to be recognized compared to frequently oc-

curring function words (such as, ”the”, ”of”, etc.). We analyzed

the performance of the baseline and the various large LMs on these

salient terms to study the impact on rare words. The Salient Term

Error Rate (STER) is reported in Table 7, defined as the number of

deletion and substitution errors on the salient terms divided by the

total number of salient terms. Out of a total of 600K words, approx-

imately, 10% words are tagged as salient terms for en-in and 5% for

en-us. First we observe that almost all rescoring and fusion can re-

duce the error made on these salient terms. In en-us, as reflected by

the WER reported in Table 4, T5 outperforms other LMs. In en-in,

however, NLM fusion in the first pass has a bigger impact on the

salient terms than any rescoring method similar to what has been re-

ported in [37]. Although MT5 has been fine tuned on the same data

as the NLM, we find that it is less impactful by itself on the salient

terms in en-in.

Although MT5 has been fine tuned on the same data as the

neural LM, we find that it is less impactful by itself on the salient

terms. However, in both languages, the combination of these two

LMs through interpolation is additive (last row in Table 6) result-

ing in the best performance. As noted in [35, 36] scaling to larger

and larger datasets is only beneficial when the data is high-quality

and larger models require larger data sets. This can explain some

of the differences seen between these two relatively high resource

languages.

STER en-us en-in

Baseline 28.8 20.0
+ MaxEnt rescoring 28.8 17.4
+ NLM rescoring 27.4 16.7
+ T5/MT5 rescoring 26.7 17.6
+ NLM fusion 27.2 15.4
+ NLM fusion & T5/MT5 rescoring 26.4 12.1

Table 7: Errors analysis on salient terms of en-us and en-in.

7. CONCLUSION

In this study, we presented the impact of LLMs (up to 350B pa-

rameters) on long-form ASR. We demonstrated up to 8% relative

reduction in Word Error Rate (WER) on US English (en-us) and

code-switched Indian English (en-in) long-form ASR test sets and a

reduction of up to 30% relative on Salient Term Error Rate (STER)

over a strong first-pass baseline that uses a maximum-entropy based

language model. We also find that the gains in performance from

the combination of LLMs trained on vast quantities of available data

(such as C4 [1]) and conventional neural LMs is additive and sig-

nificantly outperforms a strong first-pass baseline with a maximum

entropy LM. To the best of our knowledge, this is the first study that

scales LLMs to long-form ASR.

8. REFERENCES

[1] C. Raffel et al., “Exploring the limits of transfer learning with a

unified text-to-text transformer.” J. Mach. Learn. Res., vol. 21,

no. 140, pp. 1–67, 2020.

[2] A. Wang and K. Cho, “Bert has a mouth, and it must speak:

Bert as a markov random field language model,” arXiv preprint

arXiv:1902.04094, 2019.

[3] C. Raffel et al., “Exploring the limits of transfer learning with a

unified text-to-text transformer,” Journal of Machine Learning

Research, vol. 21, no. 140, pp. 1–67, 2020.

[4] T. Brown et al., “Language models are few-shot learners,” Ad-

vances in neural information processing systems, vol. 33, pp.

1877–1901, 2020.

[5] A. Chowdhery et al., “Palm: Scaling language modeling with

pathways,” arXiv preprint arXiv:2204.02311, 2022.

[6] X. Zheng, C. Zhang, and P. C. Woodland, “Adapting gpt, gpt-

2 and bert language models for speech recognition,” in 2021

IEEE ASRU, 2021, pp. 162–168.

[7] J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff, “Masked

language model scoring,” in 2020 ACL, Jul. 2020.

[8] E. Variani et al., “Neural oracle search on n-best hypotheses,”

in ICASSP, 2020, pp. 7824–7828.

[9] S.-H. Chiu and B. Chen, “Innovative bert-based reranking lan-

guage models for speech recognition,” in SLT. IEEE, 2021,

pp. 266–271.

[10] T. Hori, Y. Kubo, and A. Nakamura, “Real-time one-pass

decoding with recurrent neural network language model for

speech recognition,” in ICASSP. IEEE, 2014, pp. 6364–6368.

[11] J. Chorowski and N. Jaitly, “Towards better decoding and lan-

guage model integration in sequence to sequence models,”

arXiv preprint arXiv:1612.02695, 2016.

[12] T. Hori, J. Cho, and S. Watanabe, “End-to-end speech recog-

nition with word-based rnn language models,” in SLT. IEEE,

2018, pp. 389–396.

[13] C. Peyser et al., “Improving tail performance of a delibera-

tion e2e asr model using a large text corpus,” arXiv preprint

arXiv:2008.10491, 2020.

[14] A. Sriram, H. Jun, S. Satheesh, and A. Coates, “Cold fu-

sion: Training seq2seq models together with language mod-

els,” arXiv preprint arXiv:1708.06426, 2017.

[15] C. Gulcehre et al., “On using monolingual corpora in neural

machine translation,” arXiv preprint arXiv:1503.03535, 2015.

[16] C. Shan et al., “Component fusion: Learning replaceable lan-

guage model component for end-to-end speech recognition

system,” in ICASSP. IEEE, 2019, pp. 5361–5635.

[17] A. Kannan et al., “An analysis of incorporating an external lan-

guage model into a sequence-to-sequence model,” in ICASSP,

2018, pp. 1–5828.

[18] E. Variani, D. Rybach, C. Allauzen, and M. Riley, “Hybrid

autoregressive transducer (hat),” in ICASSP, 2020, pp. 6139–

6143.

[19] E. McDermott, H. Sak, and E. Variani, “A density ratio ap-

proach to language model fusion in end-to-end automatic

speech recognition,” in ASRU, 2019, pp. 434–441.

[20] C. Allauzen, E. Variani, M. Riley, D. Rybach, and H. Zhang,

“A hybrid seq-2-seq ASR design for on-device and server ap-

plications,” in Interspeech 2021, 2021, pp. 4044–4048.

[21] T. N. Sainath et al., “An efficient streaming non-recurrent

on-device end-to-end model with improvements to rare-word

modeling,” in Interspeech, 2021, pp. 1777–1781.

[22] K. Hu et al., “Improving deliberation by text-only and semi-

supervised training,” arXiv preprint arXiv:2206.14716, 2022.

[23] L. Xue et al., “mT5: A massively multilingual pre-trained text-

to-text transformer,” in 2021 NAACL: Human Language Tech-

nologies, Jun. 2021.

[24] A. Gulati et al., “Conformer: Convolution-augmented

transformer for speech recognition,” arXiv preprint

arXiv:2005.08100, 2020.

[25] H. Liao, E. McDermott, and A. Senior, “Large scale deep neu-

ral network acoustic modeling with semi-supervised training

data for youtube video transcription,” in ASRU, 2013, pp. 368–

373.

[26] A. Narayanan et al., “Recognizing long-form speech using

streaming end-to-end models,” in ASRU, 2019, pp. 920–927.

[27] J. Emond, B. Ramabhadran, B. Roark, P. Moreno, and M. Ma,

“Transliteration based approaches to improve code-switched

speech recognition performance,” in SLT. IEEE, 2018, pp.

448–455.

[28] G. Wenzek et al., “Ccnet: Extracting high quality mono-

lingual datasets from web crawl data,” arXiv preprint

arXiv:1911.00359, 2019.

[29] R. Botros et al., “Tied & reduced rnn-t decoder,” arXiv preprint

arXiv:2109.07513, 2021.

[30] F. Biadsy, K. Hall, P. Moreno, and B. Roark, “Backoff inspired

features for maximum entropy language models,” 2014.

[31] F. Biadsy, M. Ghodsi, and D. Caseiro, “Effectively build-

ing tera scale maxent language models incorporating non-

linguistic signals,” 2017.

[32] A. Tripathi, H. Lu, H. Sak, and H. Soltau, “Monotonic re-

current neural network transducer and decoding strategies,” in

ASRU, 2019, pp. 944—-948.

[33] R. Zazo, T. N. Sainath, G. Simko, and C. Parada, “Feature

learning with raw-waveform cldnns for voice activity detec-

tion,” in Interspeech, 2016, pp. 3668–3672.

[34] R. Prabhavalkar et al., “Less is more: Improved rnn-t decod-

ing using limited label context and path merging,” in ICASSP,

2021, pp. 5659–5663.

[35] J. Kaplan et al., “Scaling laws for neural language models,”

arXiv preprint arXiv:2001.08361, 2020.

[36] J. Hoffmann et al., “Training compute-optimal large language

models,” arXiv preprint arXiv:2203.15556, 2022.

[37] V. Ravi et al., “Improving accuracy of rare words for rnn-

transducer through unigram shallow fusion,” arXiv preprint

arXiv:2012.00133, 2020.

	 Introduction
	 Related Work
	 Large Language Models
	 T5 and PaLM
	 Integration with ASR Models

	 Experiments
	 Data
	 Training Large Language Models
	 ASR Models
	 Neural and Maximum-Entropy based Language Models
	 Decoding and Rescoring

	 Results
	 Lattice Quality
	 Comparison of LMs
	 Code-switching Task
	 Comparison of LMs on the code-switching task

	 Error Analysis
	 Conclusion
	 References

