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ABSTRACT

Recently, end-to-end neural diarization (EEND) is introduced and
achieves promising results in speaker-overlapped scenarios. In
EEND, speaker diarization is formulated as a multi-label prediction
problem, where speaker activities are estimated independently and
their dependency are not well considered. To overcome these disad-
vantages, we employ the power set encoding to reformulate speaker
diarization as a single-label classification problem and propose the
overlap-aware EEND (EEND-OLA) model, in which speaker over-
laps and dependency can be modeled explicitly. Inspired by the
success of two-stage hybrid systems, we further propose a novel
Two-stage OverLap-aware Diarization framework (TOLD) by in-
volving a speaker overlap-aware post-processing (SOAP) model
to iteratively refine the diarization results of EEND-OLA. Exper-
imental results show that, compared with the original EEND, the
proposed EEND-OLA achieves a 14.39% relative improvement in
terms of diarization error rates (DER), and utilizing SOAP provides
another 19.33% relative improvement. As a result, our method
TOLD achieves a DER of 10.14% on the CALLHOME dataset,
which is a new state-of-the-art result on this benchmark to the best
of our knowledge.

Index Terms— speaker diarization, end-to-end neural diariza-
tion, two-stage framework, overlap-aware modeling

1. INTRODUCTION

Speaker diarization aims to solve the problem namely “who spoken
when”, which plays an essential role in many real-world applica-
tions, such as telephone transcription [1], meeting minutes [2] and
subtitle annotation [3]. In these applications, accurate diarization
results are important to achieve better system performance [4].

Conventional speaker diarization methods are based on cluster-
ing algorithms, in which voice activity detection (VAD) [5] is first
adopted to split the raw audio into speech segments. Then, speaker
embedding extraction models, such as i-vectors [6], d-vectors [7],
x-vectors [8] and c-vectors [9] are adopted to generate speaker em-
beddings for each segment. These embeddings are clustered to group
segments belonging to the same speaker in an unsupervised fashion,
such as K-means [10], spectral clustering [11] and agglomerative hi-
erarchical clustering (AHC) [12]. Due to the unsupervised manner,
these methods do not minimize diarization errors directly resulting
in the sub-optimal results. To solve the problem, supervised cluster-
ing methods are introduced [13, 14]. However, both supervised and
unsupervised clustering methods can hardly deal with overlapping
speech due to the speaker-homogeneous assumption [15].

* Equal contribution.

To deal with overlapping speech, end-to-end neural diariza-
tion (EEND) [16] is introduced by formulating speaker diarization
as a multi-label prediction problem. EEND models can minimize di-
arization errors directly with the permutation-invariant training (PIT)
loss function [17]. In SA-EEND [18] and CB-EEND [19], multi-
head self-attention [20] blocks are employed to further improve the
diarization performance. To handle a flexible number of speakers,
encoder-decoder based attractor (EDA) [21] is involved into EEND,
which captures the information of the whole speech sequence and
generates attractors for activated speakers. EEND-EDA can achieve
better performance than EEND and SA-EEND even for a fixed
number of speakers.

Recently, two-stage hybrid systems are introduced to utilize the
advantages of clustering methods and EEND models. In [22–24],
clustering methods are employed as the first stage to obtain a flexible
number of speakers, and then the clustering results are refined with
neural diarization models as post-processing, such as two-speaker
EEND, target speaker voice activity detection (TSVAD) and speaker
overlap-aware neural diarization. Meanwhile, in [25] and [26], the
EEND-EDA model is employed as the first stage to extract attractors
for each segment, and then clustering methods are used to obtain
the inter-segment speaker correspondence by grouping the extracted
attractors of each segment.

In this paper, we first propose the overlap-aware EEND (EEND-
OLA) model, in which the speaker dependency and overlaps are
modeled explicitly by reformulating speaker diarization as a single-
label classification problem with the power set encoding (PSE).
Then, we further propose a novel Two-stage OverLap-aware
Diarization framework (TOLD), where a speaker overlap-aware
post-processing (SOAP) model is involved to iteratively refine the
results of overlap-aware EEND. Specifically, in the first stage, an
LSTM based EDA module is employed to extract attractors, and the
corresponding order between speakers and attractors are determined
by minimizing the permutation-invariant training loss function.
Given order-determined attractors, we can represent speaker over-
laps with a single label rather than a set of multiple binary labels.
In the second stage, we select non-overlapped speech segments to
extract the initial speaker profiles according to the diarization results
from the first stage. Then, speaker profiles and acoustic features are
fed into the SOAP model to further refine the results by iteratively
performing profile extraction and overlap-aware diarization.

2. TWO-STAGE OVERLAP-AWARE DIARIZATION

In this section, we describe the proposed two-stage framework,
TOLD. As shown in Fig. 1, our system consists of two models
named EEND-OLA and SOAP, respectively.
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Fig. 1. The overall architecture of the proposed method, TOLD, where ⊕ denotes concatenation operation.

2.1. Overlap-aware EEND

At the first stage, we propose overlap-aware EEND (EEND-OLA),
which simplify the speaker diarization into a single-label classifica-
tion problem with power set encoding (PSE). As shown in Fig. 1,
the input is a T -length sequence of F dimensional features X =
[x1, . . . ,xT ] ∈ RF×T . A transformer encoder without position en-
coding is utilized as a speech encoder to extract speech embeddings,
which can be represented as E = [e1, . . . , eT ] ∈ RD×T . Then,
these embeddings are fed into an LSTM based EDA module to com-
pute a flexible number of attractors A = [a1, . . . ,aS ] ∈ RD×S :

h0, c0 = LSTMEncoder (e1, . . . , eT )

as, (hs, cs) = LSTMDecoder (0, (hs−1, cs−1))
(1)

where 1 ≤ s ≤ S + 1 and S is the number of activated speakers
in the sequence. 0 is a D-dimensional zero vector. hs−1 and cs−1

represent the hidden and cell states of LSTM from the previous step,
respectively. As described in [21], we randomly shuffle the speech
embeddings across the time axis to improve the performance.

The training target of EEND-OLA is minimizing the weighted
summation of the attractor existence loss, PIT loss and PSE loss. The
attractor existence loss is applied to guide the model to generate the
accurate number of attractors, which can be formulated as follows:

ps =
1

1 + exp (− (WTas + b))

ls =

{
1 s ∈ {1, . . . , S}
0 s = S + 1

La =
1

S + 1
BCE (l,p)

(2)

where l = [l1, . . . , lS+1]
T , p = [p1, . . . , pS+1]

T and BCE denotes
the binary cross entropy. W and b are trainable parameters.

The PIT loss is used to determine the corresponding order be-
tween attractors and speakers, which can be represented as follows:

Ld =
1

T
min

ϕ∈perm(1,...,S)

T∑
t=1

BCE
(
yϕ
t , ŷt

)
ŷt = σ

(
AT et

)
∈ (0, 1)S

yt = [yt,1, . . . , yt,S ] ∈ (0, 1)S

(3)

where ŷt denotes the posterior probabilities and yt denotes the
ground-truth binary labels. By minimizing the PIT loss, the speaker
order is determined and the corresponding labels are represented as
ỹt = yϕ∗

t = [ỹt,1, . . . , ỹt,S ] ∈ (0, 1)S .
As for PSE loss, we calculate the PSE labels from the order-

determined binary labels ỹt as follows:

wt = PSE(ỹt) = ỹt,1 × 20+, . . . ,+ỹt,S × 2S−1 (4)

According to real scenarios, we assume that there are at most K = 3
speakers active simultaneously in one frame and the total number of
categories can be computed as:

N =

K∑
k=0

(
Smax

k

)
=

K∑
k=0

Smax!

k!(Smax − k)!
(5)

where Smax represents the predefined maximum number of speak-
ers. In this way, speaker diarization is reformulated as a single-label
classification problem. To predict PSE labels, we introduce an addi-
tional LSTM layer to make full use of contextual information. Since
the number of attractors is flexible and the LSTM layer requires the
input to be a sequence of fixed-dimensional vectors, we pad attrac-
tors as the number of Smax = 8 with zero vectors. The similarities
between padded attractors and speech embeddings are obtained by
inner products and fed into the LSTM layer to predict the probabili-
ties of PSE labels ŵt ∈ RN :

dt = [< et,a1 >,< et,a2 >, . . . , < et,aSmax >]

ŵt = Softmax(WT (LSTM(dt; (ht−1, ct−1))) + b)
(6)

where ŵt represents the prediction of PSE labels. Then, the PSE
loss can be obtained as follows:

LPSE =
1

T

T∑
t=1

CE (ŵt, wt) (7)

where CE denotes the cross entropy loss. The total loss at the first
stage can be represented as follows:

LStage1 = LPSE + Ld + αLa (8)

In this paper, α is set to 1.0 and 0.01 for pre-training and data adap-
tion, respectively.



2.2. Speaker overlap-aware post-processing

In SOAP, non-overlapped speech segments are selected and fed into
a pre-trained x-vector extractor to obtain the speaker profiles V =
[v1,v2, . . . ,vS ]. The ResNet34 [27] is employed as our embedding
extraction model, which is optimized by minimizing the ArcFace
loss function [28] with a margin of 0.25 and softmax pre-scaling of
8. The encoding layer is based on global statistic pooling, and the
dimension of the speaker embedding layer is 256. More details can
be found in [24]. Meanwhile, the speaker embedding extractor is
also used to initialize the speech encoder, which consists of convo-
lutional blocks (Conv), windowed statistic pooling (SP) and embed-
ding layer (Emb). Note that, different from embedding extractor, the
statistic pooling of speech encoder is calculated on a window rather
then the entire input sequence:

ht = Emb(SP(Conv(X)It−2/l:t+l/2)) (9)

where It−2/l:t+l/2 represents an identity window with ones from
t − l/2 to t + l/2 and zeros otherwise. ht denotes the outputs of
embedding layer in speech encoder at time-step t.

Given encoded features H = [h1,h2, . . . ,hT ] and speaker pro-
files V, context-dependent (CD) and context-independent (CI) scor-
ers are employed to predict activities of speaker s at time-step t:

SCI
s,t = DNN (vs ⊕ ht) (10)

where DNN represents a deep neural network consisting of three
fully-connected layers with Tanh activation function and an output
layer with 256 units. ⊕ means the concatenation of two vectors. In
CD scorer, a multi-head self attention (MHSA) based neural network
is employed to predict the context-dependent probabilities of speaker
s at all time-steps:

zs,0 = [h1 ⊕ vs,h2 ⊕ vs, . . . ,hT ⊕ vs]

z̄s,l = zs,l−1 + MHSAl(zs,l−1, zs,l−1, zs,l−1)

zs,l = z̄s,l + max(0, z̄s,lWl
1 + bl

1)W
l
2 + bl

2

SCD
s = Sigmoid(Wozs,LCD + bo)

(11)

where MHSAl(Q,K, V ) represents the multi-head self attention of
the l-th layer [20] with query Q, key K, and value V matrices. Wl

∗
and bl

∗ denotes the learnable weight and bias of the l-th layer (o for
output layer).

We employ a LSTM layer to model speaker dependency and
overlaps. The inputs of LSTM are concatenated scores from CI and
CD scorers, and the target outputs are PSE labels given the speaker
order in profiles:

ŵt = Softmax(WT (LSTM(SCI ⊕ SCD)) + b) (12)

We adopt a multi-task learning strategy to optimize our model.
The main training objective is minimizing the CE loss between pre-
dicted probabilities of PSE labels ŵt and their ground-truth counter-
parts wt:

LCE =
1

T

T∑
t=1

CE (ŵt, wt) (13)

In addition, we provide extra guidance to the intermediate CI and
CD scorers by minimizing the BCE loss between frame-level scores
S∗
t and posterior probabilities of speaker activities yt:

LGuide =
1

T

T∑
t=1

BCE
(
SCI
t ,yt

)
+ BCE

(
SCD
t ,yt

)
(14)

Finally, the training object of the second stage is obtained as:

LStage2 = LCE + λLGuide (15)

where λ is a hype-parameter to balance the CE and guidance losses.
According to preliminary experiments, λ is set to 0.1 in this paper.

3. EXPERIMENTAL SETTINGS

3.1. Data

We first pre-train the models with simulated mixtures and then fine-
tune them on the real dataset. The simulated mixtures are generated
from Switchboard-2 (Phase I & II & III), Switchboard Cellular (Part
1 & 2) and the NIST Speaker Recognition Evaluation (2004 & 2005
& 2006 & 2008) datasets. Noises from MUSAN [29] and simulated
room impulse responses [30] are applied to make simulated mix-
tures more similar to real conversations. To train the models at the
first stage, we adopt the simulation procedure described in [18] and
obtain 400,000 mixtures with the speaker number varied from one
to four. For the second stage, we follow the simulation procedure
in [24] and obtain 112,500 simulated mixtures for training with the
speaker number varied from two to seven.

To evaluate our method in the real-world scenarios, we employ
the widely used CALLHOME dataset, which comprises 500 record-
ings with the speaker number varied from two to seven speakers in
each recording. For fair comparison, we adopt the same evaluation
policies as described in [21]. The entire dataset is split into two
subsets for adaption and evaluation, and each subset includes 250
recordings.

3.2. Model settings and training details

The input of TOLD is log-scaled Mel-filterbank features with the
window size of 25ms and the shift of 10ms. The EEND-OLA and
SOAP encoders consist of four transformer blocks, where each block
comprises a multi-head attention layer with 256 attention units and
four heads. As for the EDA module, two unidirectional LSTM lay-
ers are employed as attractor encoder and decoder, respectively. To
model the contextual information, we employ a LSTM layer to pre-
dict the posterior probabilities of PSE labels at both stages. All
LSTM layers consist of 256 hidden units and cell states.

At the first stage, we train EEND-OLA for 100 epochs on 2-
speaker simulated mixtures with the maximum sequence length of
50 seconds and finetune the model for 25 epochs on all simulated
mixtures with speaker number from one to four. Since recordings
of test set usually longer than 50 seconds leading to a mismatch
between training and test, we further finetune the model for an-
other epoch on all mixtures with the maximum sequence length of
200 seconds. At the second stage, the original single-speaker utter-
ances from Switchboard-2, Switchboard Cellular and NIST Speaker
Recognition Evaluation datasets are used to train the profile extrac-
tor, which is further finetuned on the real data with non-overlap seg-
ments. We also train the SOAP model for 100 epochs, in which
the SOAP encoder is initialized with the pre-trained profile extrac-
tor and frozen in the first 50 epochs. The sequence length is limited
to 16 seconds. To evaluate on CALLHOME dataset, we finetune the
EEND-OLA model for 100 epochs on the adaption set with the max-
imum sequence length of 200 seconds and average the parameters in
the last ten checkpoints. For SOAP, we finetune the model for ten
epochs and the last five checkpoints are averaged. We employ the
diarization error rate (DER) as our evaluation metric with a collar
tolerance of 0.25 seconds.



Table 1. Comparison of different one-stage systems in terms of
DER(%) on CALLHOME dataset. † means the oracle VAD is used.

Method Number of Speakers

2 3 4 5 6 All

VBx† [31] 10.00 14.28 21.19 27.91 35.59 15.80
EEND-EDA [21] 8.50 13.24 21.46 33.16 40.29 15.29

EEND-OLA 6.91 11.19 17.08 27.82 30.95 12.57

EEND-vector clust. [26] 7.94 11.93 16.38 21.21 23.10 12.49
EEND-global-local [25] 7.11 11.88 14.37 25.95 21.95 11.84

TOLD 5.73 10.31 11.96 23.89 20.39 10.14

4. EXPERIMENTAL RESULTS

4.1. The effect of overlap-aware modeling

We compare the proposed EEND-OLA with other one-stage meth-
ods on real-life conversations from the CALLHOME dataset, which
includes a flexible number of speakers. The results are shown in
Table 1. Note that the results of VBx are obtained with the oracle
voice activity dection, while other methods use the model outputs
directly. EEND-EDA(Paper) represents the results reported in [21],
and EEND-EDA denotes our own implementation with the training
strategy mentioned in Section 3.2. Since, our implemented EEND-
EDA achieves a better performance than the original version, we use
it in the following experiments.

From Table 1, we can see that the proposed EEND-OLA
achieves the best performance for a flexible number of speakers than
other one-stage models. Although SA-EEND and CB-EEND are
designed for a fixed number of speakers, our method still achieves a
comparable performance with them on the two-speaker recordings.
Compared with EEND-EDA, the proposed EEND-OLA achieves
a 13.49% relative reduction on the averaged DER, which reveals
the effectiveness of overlap-aware modeling. In addition, we also
provide the diarization results derived from the intermediate states
of EEND-OLA before PSE. As seen in the row “–Before PSE”, the
intermediate results are also better than EEND-EDA. This indicates
that the PSE labels can improve the learning process of EEND-EDA.

4.2. Comparison of two-stage systems

In Table 2, we compare the proposed TOLD with other two-stage
systems on real-life recordings from the CALLHOME dataset.
In EEND-post, a 2-speaker end-to-end neural diarization model
is employed as post-processing to refine the clustering results.
Meanwhile, in EEND-vector clustering and EEND-global-local,
long-term speaker-overlapped recordings are split into segments and
processed by the end-to-end neural diarization model independently.
Then, a clustering algorithm is used to obtain the speaker correspon-
dence of each segment and aggregate the diarization results. As we
can see, the above two-stage methods are actually implemented by
combining EEND models and clustering algorithms. Different from
them, both of the tow stages in TOLD are based on neural network
models, which provide the potential for unified end-to-end system.
In total, our TOLD achieves a 10.14% DER on the CALLHOME
test set, which is a new state-of-the-art result on this commonly-used
benchmark.

Table 2. Comparison of different two-stage systems in terms of
DER(%) on CALLHOME dataset.

Method Number of Speakers

2 3 4 5 6 All

EEND-post [23] 9.87 13.11 16.52 28.65 27.83 14.06
EEND-vector clust. [26] 7.94 11.93 16.38 21.21 23.10 12.49
EEND-global-local [25] 7.11 11.88 14.37 25.95 21.95 11.84

TOLD 5.73 10.31 11.96 23.89 20.39 10.14

Table 3. Comparison of different methods for two stages on the
CALLHOME dataset. † means the oracle VAD is used.

Stage1 Stage2 Number of Speakers

2 3 4 5 6 All

VBx† TSVAD 6.84 9.85 14.46 24.02 31.50 11.38
SOAP 6.26 9.91 14.22. 23.96 31.18 11.13

EEND-EDA TSVAD 6.25 10.79 15.10 23.65 23.73 11.28
SOAP 5.73 10.57 14.67 24.15 22.53 10.90

EEND-OLA TSVAD 6.23 10.43 12.49 23.96 21.67 10.54
SOAP 5.73 10.31 11.96 23.89 20.39 10.14

4.3. Ablation study of TOLD

To further investigate the impact of different methods for the two
stages, we design ablation experiments, and the results are shown
in Table 3. For the first stage, we evaluate VBx, EEND-EDA and
EEND-OLA. For the second stage, TSVAD and SOAP are com-
pared. According to the results in Table 1 and Table 3, we find
that, with the same second-stage model, the lower DER provided
by the first stage usually means the better performance achieved by
the whole system. No matter which second-stage model is used, the
proposed EEND-OLA always provides a better performance than
VBx and EEND-EDA. Besides, no matter which model is used for
the first stage, SOAP provides a lower DER than TSVAD. This may
indicates that SOAP is more appropriate for post-processing.

5. CONCLUSIONS

In this paper, we reformulate speaker diarization from a multi-
label predication problem into a single-label classification problem.
Through this formulation, we propose the EEND-OLA model to
predict the power set encoded labels, which is derived from the
order-determined attractors and multiply binary labels. By explicitly
modeling the speaker dependency and overlaps, not only the out-
puts but also the intermediate states of EEND-OLA can achieve a
better diarization performance than the original EEND-EDA model.
Inspired by the recent success of two-stage hybrid systems, we fur-
ther propose the TOLD framework, in which the initial diarization
results from EEND-OLA is iteratively refined by the overlap-aware
post-processing, SOAP. By comparing the combinations of different
methods for two stages, we find that the proposed EEND-OLA can
provide a better initial diarization results for the second stage than
VBx and EEND-EDA. In addition, SOAP is a better post-processing
method than TSVAD, no matter which method is used at the first
stage. Finally, our TOLD achieves a new state-of-the-art results
on the commonly-used CALLHOME dataset, which indicates the
effectiveness of overlap-aware modeling via PSE.
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