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Abstract

Aggregating messages is a key component for the com-
munication of multi-agent reinforcement learning (Comm-
MARL). Recently, it has witnessed the prevalence of graph
attention networks (GAT) in Comm-MARL, where agents
can be represented as nodes and messages can be aggregated
via the weighted passing. While successful, GAT can lead to
homogeneity in the strategies of message aggregation, and
the “core” agent may excessively influence other agents’ be-
haviors, which can severely limit the multi-agent coordina-
tion. To address this challenge, we first study the adjacency
tensor of the communication graph and demonstrate that the
homogeneity of message aggregation could be measured by
the normalized tensor rank. Since the rank optimization prob-
lem is known to be NP-hard, we define a new nuclear norm,
which is a convex surrogate of normalized tensor rank, to
replace the rank. Leveraging the norm, we further propose
a plug-and-play regularizer on the adjacency tensor, named
Normalized Tensor Nuclear Norm Regularization (NTNNR),
to actively enrich the diversity of message aggregation during
the training stage. We extensively evaluate GAT with the pro-
posed regularizer in both cooperative and mixed cooperative-
competitive scenarios. The results demonstrate that aggregat-
ing messages using NTNNR-enhanced GAT can improve the
efficiency of the training and achieve higher asymptotic per-
formance than existing message aggregation methods. When
NTNNR is applied to existing graph-attention Comm-MARL
methods, we also observe significant performance improve-
ments on the StarCraft II micromanagement benchmarks.

Introduction
Multi-Agent Reinforcement Learning (MARL) has achieved
remarkable success in a range of challenging sequential
decision-making tasks, such as traffic control (Zhou et al.
2020), swarm robotics (Zhai et al. 2021) and multi-player
strategy games (Yuan et al. 2022). As an under-explored is-
sue in MARL, communication is a key component for multi-
agent coordination where agents can exchange their local
observations via communication messages. These messages
are aggregated by decentralized agents and further utilized to
augment individual local observations for learning policies
and selecting actions, allowing the agents to jointly optimize
the objectives.

*Corresponding authors: Kele Xu and Bo Ding

Although sustainable efforts have been made, efficient
communication between agents is still far from being solved.
How to aggregate messages is a key factor that determines
communication efficiency. To model the interactions be-
tween agents, MARL has widely utilized graph neural net-
works (GNNs) (Scarselli et al. 2008) to allow for a graph-
based representation. The multi-agent system is usually
modeled as a complete graph, and each agent corresponds
to a node. As one of the most popular GNNs variants, GAT
has shown great potential in Comm-MARL (Zhu, Dastani,
and Wang 2022). Message aggregation can be achieved via
attention-weighted message passing in the communication
graph.

Despite the success of the GAT in Comm-MARL, we
show that a lack of diversity still persists in the obtained
message aggregation strategy. In essence, many nodes in the
graph may pay undue attention to a few “key” nodes and are
often excessively influenced. This issue is identified in vari-
ous tasks modeled by GAT (Brody, Alon, and Yahav 2022),
and multiple agents exacerbate the problem severely. For the
multi-agent scenarios where the importance of messages is
conditioned on agents’ state, homogeneous message aggre-
gation strategies mean most agents may pay excessive atten-
tion to some emergent message, resulting in inefficient com-
munication. Moreover, since many Comm-MARL methods
adopt the parameter-sharing scheme, agents with homoge-
neous message aggregation strategies tend to obtain simi-
lar behaviors, severely limiting the diversity of behaviors
for better coordination (Chenghao et al. 2021). As shown
in Figure 1, the behavior obtained by methods with homo-
geneous message aggregation strategies can be suboptimal,
highlighting the urgent need for diverse message aggrega-
tion strategies.

In this paper, we aim to enable agents to explore di-
verse message aggregation strategies. Firstly, we study the
adjacency tensor of the multi-agent communication graph,
which consists of adjacency matrices generated by the multi-
head attention mechanism of GAT. We present that the ho-
mogeneity of message aggregation could be measured by
the normalized tensor rank and normalized tensor nuclear
norm. Accordingly, we propose a novel Normalized Tensor
Nuclear Norm (NTNN) regularizer, which regularize adja-
cency tensors to actively enrich the diversity of the message
aggregation strategies in Comm-MARL. In this way, agents
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(a) With homogeneous message aggregation strategies obtained by
GAT, predators 2, 3, and 4 are excessively influenced by the message
of predator 1. All predators tend to pursue prey 1 while ignoring
prey 2.
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(b) With diverse message aggregation strategies, predators 1 and 2
intend to capture prey 1, while predators 3 and 4 explore the envi-
ronment. In this way, the predators could obtain better coordination.

Figure 1: A toy experiment in the predator-prey scenario. Predators are marked in blue, and preys are in red. Four predators
with a limited vision of one grid are pursuing two static preys through communication. Exact two predators are required to be
present in the grid cell of a prey for a successful capture. Element at row i and column j of the adjacency matrix represent the
attention score of agent j’s communication message to agent i.

could discover diverse behaviors and tend to find better co-
ordination. In brief, our main contribution is threefold:
• We firstly propose to measure the diversity (or the homo-

geneity) of the message aggregation via the normalized
tensor rank of the adjacency tensor.

• We define a novel normalized tensor nuclear norm to
replace the rank. The norm can be further utilized as
the regularizer to discover diverse message aggregation
strategies for multi-agent communication.

• Experiments show that aggregating messages using
GAT with NTNNR can improve training efficiency and
asymptotic performance. Our regularizer also brings sig-
nificant performance improvements for existing graph-
attention Comm-MARL methods, using the plug-and-
play manner.

Related Work
Attention in Graphs
For graph-structured data, attention mechanisms have been
widely used to model the pairwise interactions between
nodes. For example, many previous attempts employed
GNNs with attention mechanisms (Lee et al. 2019; Brody,
Alon, and Yahav 2022), which generalizes the standard
node representation update pattern, e.g., averaging or max-
pooling of neighbors (DKipf and Welling 2017; Hamilton,
Ying, and Leskovec 2017). During the message passing, the
attention mechanism allow nodes to compute a weighted av-
erage of their neighbors, and softly select their most rele-
vant neighbors. GAT (Veličković et al. 2018) is one of the
most popular GNNs variants. GAT generalizes the multi-
head self-attention mechanism (Vaswani et al. 2017) from
sequences to graphs, which allows the model to attend to
information from different representation subspaces jointly.

Despite the effectiveness, GATv2 (Brody, Alon, and Ya-
hav 2022) finds by a theoretical analysis that the ranking
of the attention scores generated by GAT may be uncondi-
tioned on the query node, which is called the static attention

problem. To address this problem, GATv2 proposes to mod-
ify the order of weight calculation operation in GAT, outper-
forming GAT in many public datasets of GNNs.

Message Aggregation Methods in Comm-MARL

In Comm-MARL, message aggregation strategies for agents
determine how to aggregate received messages and partial
observation to select the next actions. Some works aggregate
messages with no preference, such as concatenation (Foer-
ster et al. 2016; Kim et al. 2019; Kim, Park, and Sung 2020),
averaging (Sukhbaatar, Fergus et al. 2016; Singh, Jain, and
Sukhbaatar 2019), summing up (Du et al. 2021), recurrent
neural networks (Peng et al. 2017), and so on. Since mes-
sages encode the senders’ personal understanding of their
observations, some may be more important than others.

To aggregate messages unequally, the attention mech-
anism is often utilized to calculate received messages’
weights and then aggregate them together (Das et al. 2019;
Agarwal, Kumar, and Sycara 2020). Considering the graph
topology, GAT has been proved an effective tool to aggre-
gate messages (Liu et al. 2020; Li et al. 2021; Niu, Paleja,
and Gombolay 2021). GA-Comm (Liu et al. 2020) pro-
pose a two-stage graph-attention mechanism. The hard at-
tention determines whether communication between agents
is necessary, while the soft attention calculates the atten-
tion weight. DICG (Li et al. 2021) introduces the deep im-
plicit coordination graph with the self-attention mechanism
for message aggregation.

Inherited from the static attention problem, most meth-
ods mentioned above lack diversity in terms of message ag-
gregation. Although replacing GAT with GATv2 in Comm-
MARL can prove the diversity of message aggregation the-
oretically, agents with similar observation still tend to ob-
tain homogeneous message aggregation strategies in prac-
tice. Complementary with GATv2, our method regularize
the adjacency tensor of GAT, encouraging diverse message
aggregation actively.



Diversity in MARL
As an emerging topic in MARL, maintaining diversity for
policies is meaningful for various scenarios, such as emer-
gent behavior (Tang et al. 2020), exploration (Mahajan et al.
2019) or learning to adapt (Balduzzi et al. 2019). Diverse
policies can be discovered by evolution methods (Cully
et al. 2015; Pugh, Soros, and Stanley 2016), specially de-
signed reward function (Lowe et al. 2019; Baker et al.
2019; Tang et al. 2020), role-based learning (Wang et al.
2020, 2021), population-based training (Vinyals et al. 2019;
Parker-Holder et al. 2020; Lupu et al. 2021) or iterative pol-
icy optimization (Zhou et al. 2021; Zahavy et al. 2021).

Based on the value decomposition framework, some at-
tempts aim to maintain diversity through non-shared in-
dividual Q-functions for each agent. EOI (Jiang and Lu
2021) combines the gradient from the intrinsic value func-
tion (IVF) and the total Q-function to train each agent’s local
Q-function. CDS (Chenghao et al. 2021) maximize the mu-
tual information between agents’ identities and their trajec-
tories to diversify individual Q-functions. However, a recent
work (Fu et al. 2022) theoretically shows that policy gradi-
ent with individual policy or communication can be compa-
rable to popular value-based learning methods for maintain-
ing diverse policies. They propose to obtain diverse policies
with an auto-regressive policy gradient. Each agent selects
actions according to different other agents’ actions, which
can be seen as a Comm-MARL method.

Most of the aforementioned methods did not study diverse
message aggregation strategies, which can be a potential
way to enrich diversity in Comm-MARL. We adopt the pol-
icy gradient method with parameter sharing and utilize GAT
with NTNNR to aggregate messages. To our best knowl-
edge, we are the first to discover diverse policies through
diversifying message aggregation.

Background and Notations
We model the multi-agent tasks as a Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) aug-
mented with communication, which can be described as a
tuple < N,S,U ,P,R,O,M,G, γ >. N is the number of
agents. S represents the space of global states. O denotes
the space of observations of robots, and each agent receives
a private observation oi ∈ O according to the observa-
tion function σ(si) : S → O. M represents the space of
messages. Agents generate messages mi ∈ M encoded by
its observations and others’ messages at the last timestep,
which could be modeled by the multi-agent communication
graph G =< V, E >. Node vi ∈ V represent agents, and
edges eij ∈ E represent communication links. We denote hi
as the feature of vi. Combining with local observations, each
agent aggregates communication messages and generates its
own action ui = πθ(oi,mj 6=i), where πθ is the policy with
parameter θ shared across all agents. For states s, s′ ∈ S and
a joint action u ∈ UN , the transition probability of reach-
ing state s′ from state s by executing action a is P(s′|s,u).
R is the joint reward function. γ ∈ [0, 1] denotes the dis-
count factor. Agent i aims to maximize its discounted re-
ward Es∼ρπ,u∼π[rti ] =

∑∞
t=0 γ

trti(s
t,ut), where ρπ is the
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Normalized Tensor Nuclear Norm Regularization
Regularize the rank directly is known to be NP-hard. An al-
ternative is to utilize nuclear norm, which is the convex en-
velope of the rank norm. The matrix nuclear norm is defined
as:

kAk⇤ =
X

i

�i(A) (5)

where �i(A)’ s are the singular values of A.
Extending the matrix nuclear norm to tensors, we defined

a novel tensor nuclear norm, which called Normalized Ten-
sor Nuclear Norm:

kAk⇤ =
1

K
kÂk⇤ (6)

where Â 2 CNK⇥NK is the block diagonal matrix with its
i-th block on the diagonal as the i-th frontal slice, i.e.,

Â = bdiag(Â) =

2
6664

Â(0)

Â(1)

. . .
Â(n3�1)

3
7775 (7)

As a special case, if A reduces to a matrix (K = 1 in this
case), the tensor nuclear norm reduce to the matrix nuclear
norm.

Normalized tensor nuclear norm is a tight convex surro-
gate of the normalized tensor rank. Maximization of the ten-
sor nuclear norm kAk⇤ could ensure the message combina-
tion diversity. We build a toy example for better comprehen-
sion in Figure 2

Overall Optimization Objective
In this section, we discuss how to use the tensor nuclear
norm to discover diverse message combination strategies
in graph based Comm-MARL. We implement our frame-
work with the policy decentralization with shared param-
eters (PDSP) paradigm. We adopt the REINFORCE algo-
rithm (Williams 1992) with baseline, then the gradient of
Comm-MARL’s loss function can be written as:
r✓,�LRL(✓,�) = �Ei,t[r✓log ⇡✓(ut

i|ot
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1 ADDITIONAL ENVIRONMENT
INFORMATION

Here, we present additional information about each domain used
to benchmark MAGIC against baseline algorithms.

1.1 Predator-Prey

Figure 1: The visualization of the 10-agent Predator-Prey
task. The predators (in red) with limited visions (light red re-
gion) of size 1 are searching for a randomly initialized �xed
prey (in blue).

We utilize the predator-prey environment from Singh et al. [2].
Here, there are # predators with limited visions searching for a
stationary prey. A predator or a prey occupies a single cell within
the grid world at any time, and its location is initialized randomly
at the start of each episode. The state at each point in the grid is the
concatenation of a one-hot vector which represents its own location
and binary values indicating the presence of predator and prey at
this point. The observation of each agent is a concatenated array of
the states of all points within the agent’s vision. The predators can
take actions D? , 3>F=, ;4 5 C , A86⌘C or BC0~. We utilize the ‘mixed’
mode of Predator-Prey in which the predator incurs a reward �0.05
for each time step until the prey is found. An episode is de�ned

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

as successful if all the predators �nd the prey before a prede�ned
maximum time limit. We test two levels of di�culty in this envi-
ronment. The di�culty varies as the grid size, and the number of
predators increases, as more coordination is required to achieve
success. The corresponding grid sizes and the number of predators
are set to 10�10 with 5 predators and 20�20 with 10 predators. The
10-agent task is shown in Figure 1. We set the maximum steps for
an episode (i.e., termination condition) to be 40 and 80, respectively.
The vision is set to a unit length. We de�ne a higher-performing
algorithm in this domain as one that minimizes the average steps
to complete an episode.

1.2 Tra�c Junction

Figure 2: The visualization of the hard level Tra�c Junc-
tion task. This task consists of four, two-way roads on a
18 � 18 grid with eight arrival points, each with seven dif-
ferent routes. Each agent is with a limited vision of size 1.

The second domain we utilize is the Tra�c Junction environment.
This environment, composed of intersecting routes and cars (agents)
with limited vision, requires communication to avoid collisions.
Cars enter the tra�c junction from all entry points at each time
step with a probability ?0AA8E4 , and are randomly assigned a route
at the start. The maximum number of cars in the environment at
a speci�c time is denoted by #<0G , which varies across di�culty
levels. A car occupies one cell at a time step and can take action “gas"
or “brake" on its route. The state of each cell is the concatenation
of a one-hot vector representing its location, and a value indicating
the number of cars in this cell. The observation of each car is the
concatenation of its previous action, route identi�er, and all states
of the cells within its vision. Two cars collide if they are in the same
location, resulting in a reward of �10 for each car. The simulation
terminates once all agents reach the end of its route or if the time

Figure 3: The visualization of the Traffic Junction task. This
task consists of two-way intersecting routes on a 18 ⇥ 18
grids with four arrival points, and cars (agents) with one-grid
limited vision, requires communication to avoid collisions.

where � is the hyper-parameter balance the two loss func-
tions. ✓ and � are parameters of the policy and value func-
tion respectively, sharing most of their parameters except the
parameters in the policy and value heads.

For discovering diverse message combination strategies,
we apply TNNR to the adjacency tensor A. And the loss
function of TNNR can be formulated as:

LTNNR(✓0) = �kAk⇤ (9)

where ✓0 is part of parameters ✓ to obtain the adjacency ten-
sor A.

Overall, we update the model parameter ✓ by maximum
the following objective function:

L(✓,�) = LRL(✓,�) + �LTNNR(✓0) (10)

where ✓ stands for all parameters, and � is the regularization
weight of TNNR. To anneal � during the training process,
we use adaptive weight as follows:

� =
|LRL(✓,�)|

10⇥ |LTNNR(✓0)| (11)

Experimental Results
In this section, we evaluate the performance of our TNNR
method in two scenarios. The first one is conducted in Traf-
fic Junction (Singh, Jain, and Sukhbaatar 2019b). The sec-
ond is the xxxxxxxxx We benchmark our approach against
a variety of state-of-the-art message combination baselines,
including CommNet (Sukhbaatar, Fergus et al. 2016), Tar-
MAC (Das et al. 2019), and MAGIC (Niu, Paleja, and Gom-
bolay 2021).

Traffic Junction
We simulate the traffic junction environments as shown in
Figure 3. The maximum number of cars in the environ-
ment at a specific time is denoted as Nmax and new cars
get added to the environment with probability 0.05. We re-
gard the episode as success if there is no collisions within an
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We utilize the predator-prey environment from Singh et al. [2].
Here, there are # predators with limited visions searching for a
stationary prey. A predator or a prey occupies a single cell within
the grid world at any time, and its location is initialized randomly
at the start of each episode. The state at each point in the grid is the
concatenation of a one-hot vector which represents its own location
and binary values indicating the presence of predator and prey at
this point. The observation of each agent is a concatenated array of
the states of all points within the agent’s vision. The predators can
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as successful if all the predators �nd the prey before a prede�ned
maximum time limit. We test two levels of di�culty in this envi-
ronment. The di�culty varies as the grid size, and the number of
predators increases, as more coordination is required to achieve
success. The corresponding grid sizes and the number of predators
are set to 10�10 with 5 predators and 20�20 with 10 predators. The
10-agent task is shown in Figure 1. We set the maximum steps for
an episode (i.e., termination condition) to be 40 and 80, respectively.
The vision is set to a unit length. We de�ne a higher-performing
algorithm in this domain as one that minimizes the average steps
to complete an episode.
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Figure 2: The visualization of the hard level Tra�c Junc-
tion task. This task consists of four, two-way roads on a
18 � 18 grid with eight arrival points, each with seven dif-
ferent routes. Each agent is with a limited vision of size 1.

The second domain we utilize is the Tra�c Junction environment.
This environment, composed of intersecting routes and cars (agents)
with limited vision, requires communication to avoid collisions.
Cars enter the tra�c junction from all entry points at each time
step with a probability ?0AA8E4 , and are randomly assigned a route
at the start. The maximum number of cars in the environment at
a speci�c time is denoted by #<0G , which varies across di�culty
levels. A car occupies one cell at a time step and can take action “gas"
or “brake" on its route. The state of each cell is the concatenation
of a one-hot vector representing its location, and a value indicating
the number of cars in this cell. The observation of each car is the
concatenation of its previous action, route identi�er, and all states
of the cells within its vision. Two cars collide if they are in the same
location, resulting in a reward of �10 for each car. The simulation
terminates once all agents reach the end of its route or if the time

Figure 3: The visualization of the Traffic Junction task. This
task consists of two-way intersecting routes on a 18 ⇥ 18
grids with four arrival points, and cars (agents) with one-grid
limited vision, requires communication to avoid collisions.

where � is the hyper-parameter balance the two loss func-
tions. ✓ and � are parameters of the policy and value func-
tion respectively, sharing most of their parameters except the
parameters in the policy and value heads.

For discovering diverse message combination strategies,
we apply TNNR to the adjacency tensor A. And the loss
function of TNNR can be formulated as:
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Overall, we update the model parameter ✓ by maximum
the following objective function:
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we use adaptive weight as follows:
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We simulate the traffic junction environments as shown in
Figure 3. The maximum number of cars in the environ-
ment at a specific time is denoted as Nmax and new cars
get added to the environment with probability 0.05. We re-
gard the episode as success if there is no collisions within an

Figure 2: Schematics of NTNNR. We regularize the NTNN
of the adjacency tensor A which consists of adjacency ma-
trices generated by the multi-head attention mechanism.

discounted state distribution induced by the policy.
In this paper, we denote adjacency tensors by boldface

Euler script letters A. Adjacency matrices are denoted by
boldface capital letters A; vectors are denoted by boldface
lowercase letters a, and scalars are denoted by lowercase
letters a. For the communication graph of GAT, adjacency
matrices A ∈ RN×N+ generated by the multi-head attention
mechanism can be regarded as a three-way adjacency tensor
A ∈ RN×N×K+ , where the dimension of the third way is
the number of attention heads K. We denote the (i, j, k)-th
entry of A as Aijk. The frontal slice A(:, :, k) is denoted
compactly as A(k).

Methodology
In this section, we describe the details of NTNNR (Figure 2),
which actively enrich the diversity of message combination
and can be integrated into graph-attention Comm-MARL
methods.

Measuring Message Aggregation’s Diversity with
the Normalized Tensor Rank
For each agent i, GAT computes a learnable weighted aver-
age of the representations of all neighbors j ∈ Ni.

e(hi,hj) = LeakyReLU(W′[Whi‖Whj ]), (1)

where W and W′ are learnable, and ‖ denotes vector con-
catenation.

We first consider the case that a single attention head is
used. Then the attention scores, as the elements of the adja-
cency matrix A, are normalized across all neighbors using
the softmax function:

aij = Softmaxj(e(hi,hj)) =
exp(e(hi,hj))∑

j′∈Ni exp(e(hi,h′j))
.

(2)
The adjacency matrix A ∈ RN×N+ satisfies the following

properties:





N∑

j=1

aij = 1 ∀i ∈ 1, · · · , N,

aij ≥ 0 ∀i ∈ 1, · · · , N, j ∈ 1, · · · , N.
(3)



Slices are two-dimensional sections of a tensor, defined by fixing all but two indices.
Figure 3 shows the horizontal, lateral, and frontal slides of a third-order tensor X,
denoted by Xi::, X:j:, and X::k, respectively.

Two special subarrays have more compact representation. The jth column of
matrix, a:j, may also be denoted as aj. The kth frontal slice of a third-order tensor,
X::k may also be denoted as Xk.
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(b) Lateral slices: X:j: (c) Frontal slices: X::k (or
Xk)

Figure 3. Slices of a 3rd-order tensor.

The norm of a tensor X 2 RI1⇥I2⇥···⇥IN is the square root of the sum of the squares
of all its elements, i.e.,

kX k =

vuut
I1X

i1=1

I2X

i2=1

· · ·
INX

iN=1

x2
i1i2···iN .

This is analogous to the matrix Frobenius norm. The inner product of two same-sized
tensors X, Y 2 RI1⇥I2⇥···⇥IN is the sum of the products of their entries, i.e.,

hX, Y i =

I1X

i1=1

I2X

i2=1

· · ·
INX

iN=1

xi1i2···iN yi1i2···iN .

2.1 Rank-one tensors

An N -way tensor X 2 RI1⇥I2⇥···⇥IN is rank one if it can be written as the outer
product of N vectors, i.e.,

X = a(1) � a(2) � · · · � a(N).

The symbol “�” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:

xi1i2···iN = a
(1)
i1

a
(2)
i2

· · · a(N)
iN

for all 1  in  In.

Figure 4 illustrates X = a � b � c, a third-order rank-one tensor.
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Adjacency Matrix

(a) Frontal slices view.

2 Notation and preliminaries

In this review, we have tried to remain as consistent as possible with terminology
that would be familiar to applied mathematicians and the terminology of previous
publications in the area of tensor decompositions. The notation used here is very
similar to that proposed by Kiers [101]. Other standards have been proposed as well;
see Harshman [77] and Harshman and Hong [79].

Tensors (i.e., multi-way arrays) are denoted by boldface Euler script letters, e.g.,
X. The order of a tensor is the number of dimensions, also known as ways or modes.3

Matrices are denoted by boldface capital letters, e.g., A; vectors are denoted by
boldface lowercase letters, e.g., a; and scalars are denoted by lowercase letters, e.g.,
a. The ith entry of a vector a is denoted by ai, element (i, j) of a matrix A by aij,
and element (i, j, k) element of a third-order tensor X by xijk. Indices typically range
from 1 to their capital version, e.g., i = 1, . . . , I. The nth element in a sequence
is denoted by a superscript in parentheses, e.g., A(n) denotes the nth matrix in a
sequence.

Subarrays are formed when a subset of the indices is fixed. For matrices, these
are the rows and columns. A colon is used to indicate all elements of a mode. Thus,
the jth column of A is denoted by a:j; likewise, the ith row of a matrix A is denoted
by ai:.

Fibers are the higher order analogue of matrix rows and columns. A fiber is
defined by fixing every index but one. A matrix column is a mode-1 fiber and a
matrix row is a mode-2 fiber. Third-order tensors have column, row, and tube fibers,
denoted by x:jk, xi:k, and xij:, respectively; see Figure 2. Fibers are always assumed
to be column vectors.

(a) Mode-1 (column) fibers:
x:jk

(b) Mode-2 (row) fibers:
xi:k
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(c) Mode-3 (tube) fibers:
xij:

Figure 2. Fibers of a 3rd-order tensor.

3In some fields, the order of the tensor is referred to as the rank of the tensor. In much of the
literature and this review, however, the term rank means something quite di↵erent; see §3.1.
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(b) Mode-3 fibers view.

Figure 3: Multiple views of the adjacency tensor A.

We denote the vectors selected from the i-th and j-th rows
of the matrix as ai and aj , which represent the attention
scores of agent i and j respectively for aggregating mes-
sages. If agent i and j have homogeneous message aggrega-
tion strategies, the difference between ai and aj is minor. In
this case, ai and aj could be approximately regarded as lin-
early dependent. On the contrary, diverse message aggrega-
tion strategies mean linearly independent vectors. Therefore,
we could measure the diversity (or the homogeneity) of the
message aggregation with the matrix rank of the adjacency
matrix A.

With the multi-head attention mechanism in GAT, inde-
pendentK attention mechanisms execute the attention func-
tion in parallel. Then we obtain a three-way adjacency tensor
A ∈ RN×N×K+ . As shown in Figure 3(a), K frontal slices
{A(k)}i=1,··· ,K represent independent adjacency matrices.
From another view, as shown in Figure 3(b), the mode-3
fiber A(i, j, :) represents the attention scores of agent j to
agent i using different attention heads. Multiple heads are
considered to attend to information from different represen-
tation subspaces. Thus we aim to maintain the diversity in
both the frontal slices view and the mode-3 fibers view of
the adjacency tensor.

Extended from the matrix rank, tensor rank could be de-
fined in various ways. CP rank (Kolda and Bader 2009) de-
notes the smallest number of rank one tensor decomposi-
tion. But both CP rank and its convex relaxation is hard to
obtain. To avoid this issue, the tractable Tucker rank (Kolda
and Bader 2009) and its convex relaxation are more widely
used. However, most existing tensor ranks can not directly
measure the linear correlation from both frontal slices and
mode-3 fibers views. This motivates us to define a new ten-
sor rank to measure the homogeneity of message aggrega-
tion with multi-head attention GAT.

We denote Â as a result of applying normalization to A
along the 3-rd way. Specifically, we apply Softmax on every
tube fibers A(i, j, :), i.e.,

Âijk =
exp(Aijk)∑

l∈[0,K−1] exp(Aijl)
, K ≥ 2. (4)

Then we can define the normalized tensor rank as:

rankn(A) =
∑

k

rank(Â(k)). (5)

Normalized Tensor Nuclear Norm Regularization
The rank optimization problem is known to be NP-hard. An
alternative is to utilize the nuclear norm, and the matrix nu-
clear norm is defined as:

‖A‖∗ =
∑

i

σi(A), (6)

where σi(A) are singular values of A.
For normalized tensor Â, we denote Â ∈ RNK×NK+ as

the block diagonal matrix with its i − th block on the diag-
onal as the i− th frontal slice, i.e.,

Â = bdiag(Â) =




Â(0)

Â(1)

. . .
Â(K−1)


 . (7)

Based on the matrix nuclear norm, we define a novel ten-
sor nuclear norm for the normalized tensor rank, which is
called Normalized Tensor Nuclear Norm (NTNN):

‖A‖∗ =
1

K
‖Â‖∗. (8)

As a special case, if A reduces to a matrix (K = 1), it
is not necessary to normalize the third dimension. In this
case, NTNN reduces to the matrix nuclear norm. Consider-
ing the nuclear norm is the convex relaxation of the matrix
rank (Candès and Recht 2009), ‖Â‖∗ is a tight convex sur-
rogate of rank(Â). Combining Equation 5 and 7, ‖A‖∗ is a
tight convex surrogate of rankn(A).

Regularizing NTNN of the adjacency tensor A could
maintain the diversity of message aggregation. With the in-
crease of NTNN, the diversity of A is enriched not only in
the frontal slices view but also in the mode-3 fibers view,
which makes agents’ message aggregation strategies more
diverse.

Overall Optimization Objective
In this part, we describe how to use NTNNR to diversify
message aggregation strategies in graph-attention Comm-
MARL algorithms.

Following most Comm-MARL methods, we implement
our framework with the policy decentralization with shared
parameters (PDSP) paradigm. Then the gradient of Comm-
MARL’s original loss function can be formulated as:

∇θLRL(θ) = Ei,t[∇θlog πθ(uti|oti,mt
j 6=i)Ψ

t
i], (9)

where Ψt
i is related to the discounted reward rti and has

various forms depending on different algorithms (Schulman
et al. 2015), and θ denotes all parameters of the policy net-
work.

To discover diverse message aggregation strategies, we
apply NTNNR to the adjacency tensorA of GAT layers. The
corresponding loss function of NTNNR in the l-th layer can
be formulated as:

LNTNNR(θl) = −‖A‖∗, (10)
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Figure 4: A case study in the predator-prey scenario indicates that NTNNR encourages diverse policies, thus achieving higher
training efficiency and asymptotic performance.

Algorithm 1: Comm-MARL with NTNNR
Initialization: the number of agents N , the number of the
communication graph layers L, parameters of the policy net-
work θ

1: while Training do
2: L(θ)← 0
3: for each agent n ∈ range(N) do
4: Calculate the Comm-MARL loss LRL(θ)
5: L(θ)← L(θ) + LRL(θ)
6: end for
7: for each communication graph layer l ∈ range(L)

do
8: if Number of attention heads is greater than 1 then
9: Normalize the adjacency tensor as Equation 4.

10: end if
11: LNTNNR(θl) = −‖A‖∗
12: Calculate the λl as Equation 12.
13: L(θ)← L(θ) + λlLNTNNR(θl)
14: end for
15: θ ← optimize(L(θ))
16: end while

where θl is part of parameters θ to obtain the adjacency ten-
sor A of the l-th GAT layer.

Overall, we update the model parameter θ by minimizing
the following loss function:

L(θ) = LRL(θ) +
∑

l

λlLNTNNR(θl), (11)

where λl is the regularization weights of NTNNR for layer l.
To anneal λl during the training process, we introduce new
scaling hyper-parameters βl and obtain adaptive weight as
follows:

λl =
|LRL(θ)|

βl × |LNTNNR(θl)|
. (12)

Algorithm 1 details how NTNNR is integrated with
generic Comm-MARL algorithms.

Experimental Results
In this part, we evaluate the performance of NTNNR in three
widely-used scenarios: Predator-Prey, Traffic Junction, and

StarCraft II Multi-Agent Challenge.
In the mixed cooperative-competitive predator-prey sce-

nario, we conduct ablation studies to show the effectiveness
of NTNNR. We compare GAT with NTNNR with two base-
lines: vanilla GAT and applying our defined tensor nuclear
norm without normalization (TNNR) to GAT. In the coop-
erative traffic junction scenario, we compare our proposed
message aggregation method, GAT with NTNNR, against
a variety of widely used message aggregation methods, in-
cluding averaging used in CommNet (Sukhbaatar, Fergus
et al. 2016), signature-based attention mechanism used in
TarMAC (Das et al. 2019), GAT used in GA-Comm (Liu
et al. 2020) and MAGIC (Niu, Paleja, and Gombolay 2021),
and GATv2 (Brody, Alon, and Yahav 2022). Following the
experimental setup in MAGIC, we utilize the two-layer
GAT. The first layer contains two attention heads in the
predator-prey scenario and four in the traffic junction sce-
nario, while the second layer always contains one. For all
methods, we uniformly adopt the REINFORCE (Williams
1992) with baseline as the training algorithm.

StarCraft II Multi-Agent Challenge (SMAC) (Whiteson
et al. 2019) is a benchmark to evaluate various reinforce-
ment learning works in recent years. Among them, we
choose two state-of-the-art Comm-MARL methods, GA-
Comm (Liu et al. 2020) and DICG-CE-LSTM 1 (Li et al.
2021), and then integrate NTNNR with them. All results are
obtained by averaging over three runs.

Predator-Prey
Predator-Prey is one of the Multi-Agent Particle Environ-
ments (Lowe et al. 2017). In this scenario, we set 8 preda-
tors pursuing four fixed preys. To make the scenario mixed
cooperative-competitive, two predators are required to be
present in the grid cell of a prey for a successful capture.
A predator obtains a reward of 0.3 if it captures a prey suc-
cessfully. We set the maximum time steps to 30 and impose
a step cost of 0.1.

We set scaling hyper-parameters to β1 = 0.2, β2 = 0.005
for the two GAT layers respectively. Figure 4(a) shows the
average reward as the training epoch increases. Integrat-

1DICG-CE-LSTM is the communication-augmented version of
DICG.
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(b) The frontal slices with NTNNR.

Figure 5: Visualization of the adjacency tensors generated by two-attention GAT with TNNR and NTNNR.

ing NTNNR into GAT when aggregating messages could
boost the training efficiency, and obtain the highest asymp-
totic performance. Two baselines need more time to explore
emergent strategies, demonstrating that NTNNR incen-
tivizes more efficient exploration and, finally, achieves better
coordination. We also record the corresponding NTNN val-
ues in Figure 4(b) and 4(c) respectively. We can observe that
vanilla GAT keeps small NTNN values in both layers dur-
ing the training stage, which suggests that all agents have
homogeneous message aggregation strategies. In the early
stage of training, GAT with NTNNR exhibits large NTNN
values, encouraging agents to obtain more diverse message
aggregation strategies and explore environments better.

Compared to TNNR, NTNNR can maintain larger NTNN
values in the second layer with the same scaling hyper-
parameters. This is due to additional diversity among dif-
ferent attention heads. Note that even though GAT with
NTNNR and with TNNR converges to similar NTNN val-
ues in the first layer, they have different message aggrega-
tion strategies. We visualize the adjacency tensors of two
methods in similar states in Figure 5. Compared to TNNR,
NTNNR can maintain diversity in inter and intra-frontal
slices, indicating that normalization is critical for the reg-
ularizer when using the multi-head attention mechanism.

Traffic Junction
The second scenario we employ is cooperative. The hard-
mode traffic junction scenario (Sukhbaatar, Fergus et al.
2016) consists of two-way intersecting routes on an 18× 18
grids with four arrival points, and cars (agents) with one-grid
limited vision, requiring communication to avoid collisions.
We set the maximum number of cars in the environment to
20 and the maximum time steps to 50. New cars get added
to the environment with a probability of 0.05. Success in-
dicates that there are no collisions within an episode. The
action space for each car is gas and break, and the reward
consists of a step cost of 0.01 and a collision penalty of−10.

We set β1 = 0.01, β2 = 0.005 for the two GAT layers
respectively. For the agents around different arrival points,
NTNNR can encourage them to obtain diverse message ag-
gregation strategies. The message aggregation strategies of
agents are constantly changing at different time steps in an
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(a) A test frame in Traffic Junc-
tion.
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(b) Message aggregation
strategies of agent 5 and 9

Figure 6: The visualization of a time step in the Traffic Junc-
tion scenario (hard mode).

episode. In order to analyze the impact of NTNNR on strate-
gies, we visualize the message aggregation strategies of two
agents at one time step evaluated with the well-trained policy
in Figure 6. It is observed that agent 5 is at the upper left ar-
rival point, while agent 9 is at the downright arrival point. In-
tuitively, even though they can communicate, the messages
are useless to each other. The distributions of representa-
tive attention scores for message aggregation are shown in
Figure 6(b). With NTNNR, agents 5 and 9 obtained diverse
message aggregation strategies. This makes communication
more efficient in the multi-agent system, avoiding unneces-
sary interference between unrelated agents.

Figure 7 shows the success rate per epoch attained by var-
ious message aggregation methods. GAT with NTNNR is
competitive when compared to other methods. Our method
not only provides a higher success rate but also can be more
sample efficient. We suppose the phenomenon attributes to
efficient communication brought by NTNNR, where agents
find optimal coordination faster.

The effect of the scaling hyper-parameters βl: To fur-
ther analyze the effect of the regularization weights of
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Figure 7: Success rates of various message aggregation ap-
proach in the traffic junction scenario.

NTNNR, we evaluate the performance with different β1 and
β2. We record the corresponding success rates in Table 1.
From the first column and row, we can observe that utilizing
NTNNR can significantly improve performance.

β1

β2 0 0.001 0.005 0.01 0.02

0 0.77 0.78 0.86 0.83 0.84
0.005 0.87 0.84 0.82 0.81 0.89
0.01 0.88 0.81 0.91 0.85 0.83
0.02 0.76 0.85 0.80 0.85 0.87

Table 1: Success rates with different scaling hyper-
parameters of NTNNR.

We observe that the best performance achieved when
β1 = 0.01, β1 = 0.005. Considering the first GAT layer
contains four attention heads while the second layer only
contains one, we recommend a larger regularization weight
when the third dimension of the adjacency tensor is larger.
Experiments in the predator-prey scenario also support this
conclusion. Besides, it is observed that setting β1 between
0.005 and 0.01 or setting β2 between 0.001 and 0.02 can
guarantee the performance improvement, showing accept-
able robustness to the scaling hyper-parameters.

StarCraft II
In this section, we evaluate our method on SMAC, a more
complex benchmark. We want to show that NTNNR is
general and easily integrated with existing graph-attention
Comm-MARL methods, using the plug-and-play manner.
We choose two state-of-the-art methods, GA-Comm and
DICG-CE-LSTM, and apply NTNNR to them. The scaling
hyper-parameter is set to 0.05 and 0.005, respectively.

The average evaluation win rates are shown in Figure 8.
Methods augmented by NTNNR achieve outstanding perfor-
mance compared with their vanilla counterparts. We suppose
the improvement is due to the emergent behaviors brought
by the diverse message aggregation strategies. To better ex-
plain why our regularizer performs well, we further visualize
the final trained strategies in Figure 9. In this 3s5z map, three
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Figure 8: Performance comparison of methods with NTNNR
over their vanilla counterparts in SMAC maps.

Figure 9: Visualization of the final strategies trained by
DICG-CE-LSTM with NTNNR in the 3s5z map. We con-
trol the red stalkers and zealots.

parameter-sharing zealots with similar observations can se-
lect diverse actions and finally surround the enemy stalkers
to attack. The sophisticated coordination reflects the effec-
tiveness of diverse message aggregation in Comm-MARL.

Conclusion
In this paper, we present that the diversity of message ag-
gregation in graph-attention Comm-MARL methods could
be measured by the normalized tensor rank, and further de-
fine the corresponding nuclear norm to quantify the diver-
sity. Then we propose a plug-and-play regularizer named
NTNNR, to actively enrich the diversity of message ag-
gregation. Experiments show that GAT with NTNNR can
provide superior performance and better training efficiency
compared to existing message aggregation methods. Fur-
thermore, NTNNR can be easily applied to existing graph-
attention Comm-MARL methods and improve their perfor-
mance.

Assuredly, our method has some limitations. In some
multi-agent coordination tasks with core agents, overly di-
verse message aggregation may be unreasonable. Therefore,
NTNNR may not achieve significant performance improve-
ments in these cases. In future work, we plan to quantify the
diversity upper bound for multi-agent systems.
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Analysis of Diversity Maintained by NTNNR
In this paper, we define the Normalized Tensor Rank and
the Normalized Tensor Nuclear Norm (NTNN). Enlarging
NTNN can enrich the diversity of tensor A from both the
frontal slice view and the mode-3 fiber view. For better com-
prehension of the effect, we will take a toy example. Sup-
pose there are two agents in the multi-agent system, and
the multi-head attention mechanism contains two heads, i.e.,
N = 2,K = 2. In this case, A ∈ R2×2×2

+ could be ex-
pressed as:

A(0) =

[
x0 1− x0
y0 1− y0

]
, A(1) =

[
x1 1− x1
y1 1− y1

]
. (13)

where x0, y0, x1 and y1 are variables.
Applying normalization to A along the 3-rd way and

transforming the tensor to the block diagonal matrix form,
we have:

Â =



x̂0 1− x̂0
ŷ0 1− ŷ0

x̂1 1− x̂1
ŷ1 1− ŷ1


 . (14)

To obtain the singular values, we calculate the eigenvalues
of ÂÂT as follows:

|ÂÂT − λÎ| = 0. (15)

We denote the four singular values as σ0, σ1, σ2, and σ3
respectively. With the properties of block diagonal matrix,
we solve Equation 15 and have:





σ2
0 + σ2

1 = 2(x̂20 − x̂0 + ŷ20 − ŷ0 + 1),
σ2
0 × σ2

1 = (ŷ0 − x̂0)2,
σ2
2 + σ2

3 = 2(x̂21 − x̂1 + ŷ21 − ŷ1 + 1),
σ2
2 × σ2

3 = (ŷ1 − x̂1)2,
x̂0 + x̂1 = 1,
ŷ0 + ŷ1 = 1.

(16)

The normalized tensor nuclear norm is the sum of the sin-
gular values of Â, which is calculated as follows:

‖A‖∗ =
1

K
‖Â‖∗ =

1

K
(σ0 + σ1 + σ2 + σ3)

=
1

K
(
√

(σ0 + σ1)2 +
√

(σ2 + σ3)2)

=
√
x̂0 + (1− x̂0)2 + ŷ0 + (1− ŷ0)2 + 2|ŷ0 − x̂0|

s.t. x̂0 + x̂1 = 1, ŷ0 + ŷ1 = 1.
(17)

From Equation 17, ‖A‖∗ would reach the maximum so-
lution when:

A(0) =

[
0 1
1 0

]
A(1) =

[
1 0
0 1

]
, or

A(0) =

[
1 0
0 1

]
A(1) =

[
0 1
1 0

]
.

(18)

Therefore, we demonstrate that NTNNR tries to maintain
the diversity of the adjacency tensor in both the frontal slice
view and the mode-3 fiber view.

Code
Our code will be released publicly to enhance the repro-
ducibility. We use the following open-source repositories for
baselines:

• MAGIC code: https://github.com/CORE-Robotics-
Lab/MAGIC

• GA-Comm code: https://github.com/starry-
sky6688/MARL-Algorithms

• DICG-CE-LSTM code: https://github.com/sisl/DICG

Implementation Details
Our implementation is on a desktop machine with one Intel
i9-12900K CPU and one NVIDIA RTX3080 GPU. All the
methods in the same scenario are run for the same number of
total environment steps (or episodes) and the same number
of iterations.

Table 2: Hyper-parameters in the the Predator-Prey and Traffic
Junction Scenarios.

Parameter Predator
-Prey

Traffic
Junction

Number of processes 16 16
Epoch size 10 10
Hidden units for LSTM encoder 128 128
Learning rate 0.001 0.001
Number of attention heads
(the first GAT layer) 2 4

Number of attention heads
(the second GAT layer) 1 1

Hidden units of each attention head 32 32
Scaling hyper-parameter β1 0.2 0.01
Scaling hyper-parameter β2 0.005 0.005

In the the Predator-Prey and Traffic Junction Scenarios,
we distribute the training over 16 threads and each thread
runs batch learning with a batch size of 500. The threads
share the parameters θ of the policy network and update
synchronously. We use RMSProp as the optimizer. Table
2 shows the details of our neural network and other hyper-
parameters.

In the StarCraft II scenario, we follow the original im-
plementations of the selected Comm-MARL methods. We
adopt their network structures and hyper-parameter settings,
except changing the number of attention heads to 4 and the
hidden units of each attention head to 32 for GA-Comm.

Training Algorithms
Most of existing Comm-MARL methods utilize policy

gradient methods with parameter sharing. Then the joint pol-
icy can be factorized as:

πθ(ut|ot,mt) =

N∏

i=0

πθ(uti|oti,mt
j 6=i) (19)

Augmented with communication, the environment and
other agents’ policies can be seen as stable for a agent.

https://github.com/CORE-Robotics-Lab/MAGIC
https://github.com/CORE-Robotics-Lab/MAGIC
https://github.com/starry-sky6688/MARL-Algorithms
https://github.com/starry-sky6688/MARL-Algorithms
https://github.com/sisl/DICG


Agents simultaneously select actions according to local ob-
servations and communication messages. So various single-
agent policy-gradient methods can be utilized as the training
algorithms for Comm-MARL.

All methods used in the predator-prey and traffic junc-
tion scenarios adopt the REINFORCE (Williams 1992) with
baseline as training algorithms. In this case, Equation 9 of
the manuscript can be written as:

∇θLRL(θ) = Ei,t[∇θlog πθ(uti|oti,mt
j 6=i)ψ

t
i ], (20)

where ψti = rti − V (oti,m
t
j 6=i) is the advantage function.

V (oti,m
t
j 6=i) is the value function.

GA-Comm adopts the REINFORCE algorithm. The
Equation 9 of the manuscript can be written as:

∇θLRL(θ) = Ei,t[∇θlog πθ(uti|oti,mt
j 6=i)

T∑

t′=t

γt
′−trt

′

i ],

(21)
where T is the maximum time steps for agents to interact
with the environment.

DICG-CE-LSTM adopts the clipped PPO (Schulman
et al. 2017) algorithm. Then the Equation 9 of the
manuscript has the following form:

∇θLRL(θ) = Ei,t[∇θmin(
πθ(uti|oti,mt

j 6=i)

πold(uti|oti,mt
j 6=i)

ψti ,

clip(
πθ(uti|oti,mt

j 6=i)

πold(uti|oti,mt
j 6=i)

, 1− ε, 1 + ε))ψti)],

(22)

where ε is the hyper-parameter for clip, and πold is the policy
of the last update iteration.


