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ABSTRACT

Graph Neural Networks (GNNs) have been applied to many
problems in computer sciences. Capturing higher-order re-
lationships between nodes is crucial to increase the expres-
sive power of GNNs. However, existing methods to capture
these relationships could be infeasible for large-scale graphs.
In this work, we introduce a new higher-order sparse con-
volution based on the Sobolev norm of graph signals. Our
Sparse Sobolev GNN (S-SobGNN) computes a cascade of fil-
ters on each layer with increasing Hadamard powers to get
a more diverse set of functions, and then a linear combina-
tion layer weights the embeddings of each filter. We evaluate
S-SobGNN in several applications of semi-supervised learn-
ing. S-SobGNN shows competitive performance in all appli-
cations as compared to several state-of-the-art methods.

Index Terms— Graph neural networks, sparse convolu-
tions, Sobolev norm

1. INTRODUCTION

Graph representation learning and its applications have
gained significant attention in recent years. Notably, Graph
Neural Networks (GNNs) have been extensively studied
[1H6]. GNNs extend the concepts of Convolutional Neu-
ral Networks (CNNs) [7] to non-Euclidean data modeled
as graphs. GNNs have numerous applications like semi-
supervised learning [2[], graph clustering [8], point cloud
semantic segmentation [9]], misinformation detection [[10]],
and protein modeling [11]. Similarly, other graph learning
techniques have been recently applied to image and video
processing applications [[12}13].

Most GNNs update their node embeddings by computing
specific operations in the neighborhood of each node. This
updating is limited when we want to capture higher-order ver-
tex relationships between nodes. Previous methods in GNNs
have tried to capture these higher-order connections by tak-
ing powers of the sparse adjacency matrix [|14], quickly con-
verting this sparse representation into a dense matrix. The
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densification of the adjacency matrix results in memory and
scalability problems in GNNs. Therefore, the use of these
higher-order methods is limited for large-scale graphs.

In this work, we propose a new sparse GNN model that
computes a cascade of higher-order filtering operations. Our
model is inspired by the Sobolev norm in Graph Signal Pro-
cessing (GSP) [15,/16]. We modify the Sobolev norm using
concepts of the Hadamard product between matrices to main-
tain the sparsity of the adjacency matrix. We rely on spec-
tral graph theory [17] and the Schur product theorem [|18]] to
explain some mathematical properties of our filtering opera-
tion. Our Sparse Sobolev GNN (S-SobGNN) employs a lin-
ear combination layer at the end of each cascade of filters to
select the best power functions. Thus, we improve expres-
siveness by computing a more diverse set of sparse graph-
convolutional operations. We evaluate S-SobGNN in semi-
supervised learning tasks in several domains like tissue phe-
notyping in colon cancer histology images [19], text classi-
fication of news [20], activity recognition with sensors [21]],
and recognition of spoken letters [22].

The main contributions of the current work are summa-
rized as follows: 1) we propose a new GNN architecture that
computes a cascade of higher-order filters inspired by the
Sobolev norm in GSP, 2) some mathematical insights of S-
SobGNN are introduced based on spectral graph theory [|17]]
and the Schur product theorem [|18[], and 3) we perform ex-
perimental evaluations on four publicly available benchmark
datasets and compared S-SobGNN to seven GNN architec-
tures. Our algorithm shows the best performance against
previous methods. The rest of the paper is organized as fol-
lows. Section[2]introduces the proposed GNN model. Section
presents the experimental framework and results. Finally,
Section @] shows the conclusions.

2. SPARSE SOBOLEV GRAPH NEURAL
NETWORKS

2.1. Preliminaries

A graphis represented as G = (V, ), where V = {1,..., N}
is the set of N nodes and £ = {(4,7)} is the set of edges
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between nodes i and j. A € RY*¥ is the weighted adja-
cency matrix of the graph such that A(7,5) = a;; € R4 is
the weight of the edge (4, 7), and A(i,5) = 0V (i,5) ¢ £.
As a result, A is symmetric for undirected graphs. A graph
signal is a function z : V — R and is represented as x €
RY. The degree matrix of G is a diagonal matrix given by
D = diag(Al). L =D — A is the combinatorial Lapla-
cian matrix,and A =1 — D_%AD_% is the symmetric nor-
malized Laplacian [23]]. The Laplacian matrix is a positive
semi-definite matrix for undirected graphs with eigenvalues{ﬂ
0 =X < X < .-+ < Ay and corresponding eigenvec-
tors {uy, us,...,uy}. In GSP, the Graph Fourier Transform
(GFT) of x is given by * = UTx, and the inverse GFT is
x = Ux [23]. In this work, we use the spectral definitions of
graphs to analyze our filtering operation. However, the spec-
trum is not required for the implementation of S-SobGNN.

2.2. Sobolev Norm

The Sobolev norm in GSP has been used as a regularization
term to solve problems in 1) video processing [[13}24], 2)
modeling of infectious diseases [25]], and 3) interpolation of
graph signals [[15}/16].

Definition 1. For fixed parameters € > 0, p € R, the Sobolev
norm is given by ||x||,.c = ||(L + €I)?/2x|| [15].

When L is symmetric, we have that ||x||2 _is given by:
I3, = xT(L + €D M

We divide the analysis of (I into two parts: 1) when € = 0,
and 2) when p = 1. For € = 0 in (I) we have:

N
x'LPx = x"UA’U x = X 'A% = Zx2(z’)/\g’. )

=1

Notice that the spectral components %x(i) are penalized with
powers of the eigenvalues A7 of L. Since the eigenvalues are
ordered in increasing order, the higher frequencies of X are
penalized more than the lower frequencies when p = 1, lead-
ing to a smooth function in G. For p > 1, the GFT X is pe-
nalized with a more diverse set of eigenvalues. We can have
a similar analysis for the adjacency matrix A using the eigen-
value decomposition A? = (VEVH)? = VEPVH, where
V is the matrix of eigenvectors, and X is the matrix of eigen-
values of A. In the case of A, the GFT % = VHx.

For p = 1in (1) we have [|x[|2, = x"(L + eI)x. The
term (L + €I) is associated with a better condition numberE]
than using L alone. For example, better condition numbers
are associated with faster convergence rates in gradient de-
scent methods as shown in [16]]. For the Laplacian matrix L,

'\ < 2in the case of the symmetric normalized Laplacian A.
2The condition number (L) associated with the square matrix L is a
measure of how well or ill-conditioned is the inversion of L.

we know that k(L) = ‘l’)\\““&‘)) “ ~ ’\‘““B(L)

is the condition number of L, Ay« (L) is the maximum eigen-
value, and Ay;y(L) is the minimum eigenvalue of L. Since
k(L) — oo, we have an ill-conditioned problem when rely-
ing on the Laplacian matrix alone. On the other hand, for
the Sobolev term, we have that L + eI = UAUT + eI =
U(A + eI)UT. Therefore, Apin(L + €I) = ¢, i.e., L + el is
positive definite (L + €I > 0) for € > 0, and:

P4 €D A (L) + €
- |>\min(L+EI)| o €

— 00, where x(L)

<k(L)Ve>0.

3)
Namely, L+ €I has a better condition number than L. It might
not be evident why a better condition number could help in
GNNs, where the inverses of the Laplacian or adjacency ma-
trices are not required to perform the propagation rules. How-
ever, some studies have indicated the adverse effects of bad-
behaved matrices. For example, Kipf and Welling [2] used
a renormalization trick (A + I) in their filtering operation to
avoid exploding/vanishing gradients. Similarly, Wu et al. [26]
showed that adding the identity matrix to A shrinks the graph
spectral domain, resulting in a low-pass-type filter.
The previous theoretical analysis shows the benefits of the
Sobolev norm about 1) the diverse frequencies computation in
(2), and 2) the better condition number in (3).

k(L+eI)

2.3. Sparse Sobolev Norm

The use of L or A in GNNs is computationally efficient be-
cause these matrices are usually sparse. Therefore, we can
perform a small number of sparse matrix operations. For the
Sobolev norm, the term (L+€I)” can quickly become a dense
matrix for large values of p, leading to scalability and mem-
ory problems. To mitigate this limitation, we use a sparse
Sobolev norm to keep the same sparsity level.

Definition 2. Let L € RV XN be the Laplacian matrix of G.
For fixed parameters € > 0 and p € N, the sparse Sobolev
term for GNNs is introduced as the p Hadamard multiplica-
tions of (L + €I) (the Hadamard power) such that:

(L+eD)® =(L+el)o(L+el)o---o(L+el). (4)

For example, (L 4 €I)(?) = (L + €I) o (L + €I). Thus, the
sparse Sobolev norm is given by:

1] (),e = (L + L) P2 x]|. (5)

Let (X,¥)(p),e = x' (L + €I)(P)y be the inner product
between two graph signals x and y that induces the associated
sparse Sobolev norm. We can easily prove that the sparse
Sobolev norm ||x|| ).« £ [|(L+ €I)(*/?x|| satisfies the basic
properties of vector normg’| for € > 0 (for ¢ = 0 we have a
semi-norm). For the positive definiteness property, we need
the Schur product theorem [/18]].

3We omit the proof due to space limitation.
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Fig. 1. Eigenvalues penalization for the non-sparse and sparse matrix multiplications of the combinatorial Laplacian matrix.

The sparse Sobolev term in (4) has the property of keep-
ing the same sparsity level for any p. Notice that (L + €I)” is
equal to the sparse Sobolev term if 1) we restrict p to be in N,
and 2) we replace the matrix multiplication by the Hadamard
product. The theoretical properties of the Sobolev norm in (2))
and (3) do not extend trivially to its sparse counterpart. How-
ever, we can develop some theoretical insights using concepts
of Kronecker products and the Schur product theorem [18].

Theorem 1. Let L be any Laplacian matrix of a graph with
eigenvalue decomposition L = UAU", we have that:

LoL=L? =PL(UaU)A®A)(UT@U"Py, (©6)

2 . . . .
where Py € {0, 1}V %N is a partial permutation matrix.

Proof. For the spectral decomposition, we have that:

LeL=(UeU)(A®A)(UTeU"), 7
where we used the property of Kronecker products (A ®
B)(C ® D) = AC ® BD [18]. Similarly, we know
that So T = P (S ® T)P,,, where S, T € R"*™, and
P, € {0,1}"*" P,, € {0,1}™ %™ are partial permutation
matrices. If S, T € R™*"™ are square matrices, we have that
SoT = P (S® T)P, (Theorem 1 in [27]). We can then
get a general form of the spectrum of the Hadamard prod-
uct for p = 2 using and Theorem 1 in [27] as follows:
LoL=L® =PLURU)AA)(UTeU"NPy. O

Eq. (6) is a closed-form solution regarding the spectrum
of the Hadamard power for p = 2. Thus, the spectrum
of the Hadamard multiplication is a compressed form of
the Kronecker product of its spectral components. The sparse
Sobolev term we use in our S-SobGNN is given by (L+¢I)(®)
so that the spectral components of the graph are changing for
each value of p as shown in (6).

For the condition number of the Hadamard powers, we
can use the Schur product theorem [[18]. We know that (L +
eI)(P) = 0V e > 0since (L + €I) = 0V e > 0, and therefore
k((L + eI)®®)) < oo. For the adjacency matrix, the eigen-
values of A lie into [—d, d], where d is the maximal degree
of G [28]. Therefore, we can bound the eigenvalues of A

into [—1, 1] by normalizing A such that A y = D :AD 2.
As a result, we know that Ay + el = 0V e > 1, and
(Any + eI)(”) = 0V e > 1. We can say that the theoret-
ical developments of the sparse Sobolev norm hold to some
extent the same developments of Section @], i.e., a more di-
verse set of frequencies and a better condition number. Fig-
ure |1| shows five normalized eigenvalue penalizations for L”
(non-sparse) and L) (sparse). We notice that the normalized
spectrum of L” and L") are very similar. Finally, we should
work with weighted graphs when using the adjacency matrix
since A(») = AV p € N for unweighted graphs.

2.4. Graph Neural Network Architecture

Kipf and Welling [2]] proposed one of the most successful yet
simple GNN, called Graph Convolutional Networks (GCNs):

HH) — o(D-5AD- P HOWD), ®)

where A = A + 1, D is the degree matrix of A, HO is
the matrix of activations in layer [ such that H(Y) = X
(data matrix), WO s the matrix of trainable weights in
layer I/, and o(-) is an activation function. The motiva-
tion of the propagation rule in (8) comes from the first-
order approximation of localized spectral filters on graphs
[1]. Kipf and Welling [2] used to propose the vanilla
GCN, which is composed of two graph convolutional lay-
ers as in (8). The first activation function is a Rectified
Linear Unit (ReLU(-) = max(0,-)), and the final acti-
vation function is a softmax applied row-wise such that
softmax(x;) = éexp (x;) where Q@ = >, exp(x;). Fi-
nally, the vanilla GCN uses cross-entropy as a loss function.
We introduce a new filtering operation based on the sparse
Sobolev term where our propagation rule is such that:
B+ = o(D, ?A,D, *HOW), )
where A, = (A + €I)() is the pth sparse Sobolev term of
A, Dp is the degree matrix of Ap, and H® = X. Notice
that Ap — A when e = 1, and p = 1, i.e., our propaga-
tion rule is a generalization of the GCN model. S-SobGNN
computes a cascade of propagation rules as in (9) with sev-
eral values of p in the set {1,2, ..., a}, and therefore a linear
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Fig. 2. Basic configuration of our S-SobGNN architecture with n layers and « filters per layer.

combination layer weights the outputs of each filter. Figure
(2] shows the basic configuration of S-SobGNN. Notice that
our graph convolution is efficiently computed since the term
]_);%Apf);% Vp € {1,2,...,a} is the same in all layers (so
we can compute it offline), and also, these terms are sparse for
any value of p (given that A is also sparse). S-SobGNN uses
ReLU as the activation function for each filter, softmax at the
end of the network, and the cross-entropy loss function. The
basic configuration of S-SobGNN is defined by the number of
filters «v in each layer, the parameter €, the number of hidden
units of each W,(Dl), and the number of layers n. When we
construct weighted graphs with Gaussian kernels, the weights
of the edges are in the interval [0, 1]. As a consequence, large
values of p could make Ap = 0, and the diagonal elements

of f);% could become co. Similarly, large values of ov make
very wide architectures with a high parameter budget, so it is
desirable to maintain a reasonable value for a. The computa-
tional complexity of S-SObGNN is O(na|&] 4+ na). For com-
parison, the computational complexity of a n-layers GCN is
O(n|&|). The exact complexity of both methods also depends
on the feature dimension, the hidden units, and the number of
nodes in the graph, which we omit for simplicity.

3. EXPERIMENTS AND RESULTS

S-SobGNN is compared to eight GNN architectures: Cheby-
shev filters (Cheby) [1]], GCN [2], GAT [3]l, SIGN [14], SGC
[26], ClusterGCN [29]], SuperGAT [30], and Transformers
[31]. We test S-SobGNN in several semi-supervised learning
tasks including, cancer detection in images [20]], text classifi-
cation of news (20News) [20], Human Activity Recognition
using sensors (HAR) [21]], and recognition of isolated spoken
letters (Isolet) [22]. We frame the semi-supervised learning
problem as a node classification task in graphs, where we con-
struct the graphs with a k-Nearest Neighbors (k-NN) method
and a Gaussian kernel with & = 30. We split the data into
train/validation/test sets with 10%/45%/45%, where we first
divide the data into a development set and a test set. This is
done once to avoid using the test set in the hyperparameter op-

Table 1. Accuracy (in %) for the baseline methods and our
S-SobGNN algorithm in four datasets for semi-supervised
learning, inferring the graphs with a k-NN method.

Model |  Cancer 20News HAR Isolet
Cheby [1] | 87.55+3.91 70.36 £1.14 73.14+7.01 69.70 &+ 1.47
GCN 2] | 76.71 +£4.47 51.76 £2.11 66.26 £4.91 55.55 +£2.72
GAT 3] | 73.51 £4.87 48.72+2.21 59.13+6.30 60.00+ 2.21
SIGN [14] | 89.55+0.38 71.79+0.25 90.98+0.25 84.02+0.30
SGC [26] | 72.80 £4.71 54.68+1.99 42.19+4+3.44 41.55+1.91
ClusterGCN [29] | 74.45+5.37 60.56 +£2.18 57.70 £5.48 63.99 +2.24
SuperGAT [30] | 70.56 £5.14 57.52+1.93 56.04 £5.32 58.49 +2.27
Transformer [31] | 71.10 +5.45 57.48+2.29 66.01 £6.10 66.24 +2.39
S-SobGNN (ours) ‘ 93.11 + 045 72.18+0.32 92.85+0.58 86.17 +0.34

The best and second-best performing methods on each dataset are shown in red
and blue, respectively.

timization. We tune the hyperparameters of each GNN with
a random search with 100 repetitions and five different seeds
for the validation set. We report average accuracies on the
test set using 50 different seeds with 95% confidence inter-
vals calculated by bootstrapping with 1,000 samples. Table
[T] shows the experimental results. S-SobGNN shows the best
performance against state-of-the-art methods.

4. CONCLUSIONS

In this work, we extended the concept of Sobolev norms using
the Hadamard product between matrices to keep the sparsity
level of the graph representations. We introduced a new
Sparse GNN architecture using the proposed sparse Sobolev
norm. Similarly, certain theoretical notions of our filtering
operation were provided in Sections [2.2] and 2.3] Finally,
S-SobGNN outperformed several methods of the literature in
four semi-supervised learning tasks.
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