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ABSTRACT
Accurate prediction of the user intent to interact with a voice assis-
tant (VA) on a device (e.g. a smartphone) is critical for achieving
naturalistic, engaging, and privacy-centric interactions with the VA.
To this end, we present a novel approach to predict the user inten-
tion (whether the user is speaking to the device or not) directly from
acoustic and textual information encoded at subword tokens which
are obtained via an end-to-end (E2E) ASR model. Modeling directly
the subword tokens, compared to modeling of the phonemes and/or
full words, has at least two advantages: (i) it provides a unique vo-
cabulary representation, where each token has a semantic meaning,
in contrast to the phoneme-level representations, (ii) each subword
token has a reusable “sub”-word acoustic pattern (that can be used to
construct multiple full words), resulting in a largely reduced vocab-
ulary space than of the full words. To learn the subword represen-
tations for the audio-to-intent classification, we extract: (i) acoustic
information from an E2E-ASR model, which provides frame-level
CTC posterior probabilities for the subword tokens, and (ii) tex-
tual information from a pretrained continuous bag-of-words model
capturing the semantic meaning of the subword tokens. The key
to our approach is that it combines acoustic subword-level poste-
riors with text information using the notion of positional-encoding
to account for multiple ASR hypotheses simultaneously. We show
that the proposed approach learns robust representations for audio-
to-intent classification and correctly mitigates 93.3% of unintended
user audio from invoking the VA at 99% true positive rate.

Index Terms— audio-to-intent, CTC posteriors, subword to-
kens, false trigger mitigation, end-to-end ASR

1. INTRODUCTION
In typical voice-assistant (VA) architectures on devices like smart-
phones, any input audio is first gated by a wake-word detection mod-
ule, which actively listens for a wake-word (e.g. “Hey Siri”, “Hey
Alexa”, “Okay Google”, and so on). It only allows audio anchored
with the wake-word to be processed by the downstream models. This
gating mechanism is often referred to as the user intent classification
(but other names such as false-trigger-mitigation as well as device-
directed-speech-detection are interchangeably used).

Prior work is mainly focused on key-word spotting and wake-
up word detection. These approaches typically rely on multi-stage
neural network based processing of acoustic features to determine
the presence of the wake-word [1, 2, 3, 4, 5]. Despite the fact that
the latest wake-word detectors are relatively highly accurate, they
can still confuse unintended speech as intended for device. Such
false alarms have adverse effects on the user engagement and over-
all experience as well as privacy considerations. To mitigate this,
some system architectures use ASR-based clues from the full con-
text of the audio as compared to the wake-word detector which only
focuses on hypothesized wake-word segment of the audio. ASR
lattice-based models have successfully been explored in this direc-
tion [6, 7, 8, 9, 10, 11, 12], showing that confusion in the ASR lat-

Fig. 1: Skeleton of our audio-to-intent approach

tices provides a strong signal of falsely accepting unintended speech.
In this work, we propose a novel approach to the user’s intent clas-
sification that detects if a given speech utterance accepted by the
wake-word detector is actually intended towards the VA or not. Un-
like traditional intent classification approaches which model acous-
tic and textual space at phoneme and word level respectively [1]-[9],
our audio-to-intent classification model learns robust acoustic and
textual information at subword token-level, and provides improved
classification accuracy when compared to the baseline approaches.

In our approach, shown in Figure 1, an end-to-end ASR model
directly predicts the frame-level subword-token probabilities from
the audio. An acoustic module processes these subword-token
posteriors as a sum-of-posteriors vector which is obtained by the
logsumexp operation. While we discard the frame-level granularity
of token probabilities, the sum-of-posteriors vector still captures
the acoustic content of the utterance as well as the uncertainty in
ASR when predicting the correct tokens. Such sum-of-posteriors
vectors were recently shown to be informative for training an ASR
model without knowing the order of the words [13]. The goal of
the acoustic module is to process acoustic information in the au-
dio, without explicitly modeling the semantics of the user’s speech.
For example, for a given query “what is deep learning”, the sum-
of-posteriors vectors would contain high probabilities for subword
tokens “ what”, “ is”, “ deep”, “ learn”, “ing” as well non-zero
probabilities for other subword tokens that are (typically) confused
(e.g. “ yearn” subword from the word “yearning”). To account
for speech semantics, our architecture is comprised of a dedicated
textual module that processes a beam of top-N subword-tokens pre-
dicted at each output frame, and models the (contextual) semantic
information in the resulting subword-token sequences. Specifically,
each subword-token is first represented by a pretrained continu-
ous bag-of-words token-level embedding [14], which are further
augmented with mean positional-encodings that captures the se-
quential and multiple-hypotheses information from ASR. Finally,
we fuse the acoustic and textual representations learned from the
two submodules to train our audio-to-intent (A2I) classifier.

The main contributions of this work can be summarized as
follows. First, we propose a novel approach that combines mul-
tiple sources of information (acoustics and text) under a common
subword-level representation learning. Second, we use sum-of-
posterior vectors that capture a multinomial probability distribution
over the subword token space. The entropy of the sum-of-posteriors
vectors encodes the uncertainty of ASR in decoding the underlying
audio. As we show in our experiments, this acoustic representa-
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Fig. 2: Continuous bag-of-words model for learning subword token-
level embeddings

tion contains useful discriminative information for the task of intent
classification. Third, the textual module encodes information from
multiple ASR hypotheses when it processes a beam of Top-N tokens
per frame, thus producing a much richer and more robust represen-
tation of the audio than processing only the top ASR hypothesis.
We demonstrate the effectiveness of this approach in the challenging
task of audio-to-intent classification. To the best of our knowledge
this is the first approach that combines acoustic and text information
at subword-level for the task of intent classification.

The rest of the paper is organized as follows. Section 2 discusses
our novel intent classification approach. Section 3 provides details of
the datasets, metrics, experimental results, and subsequent analysis.
Finally, in Section 4 we draw conclusions and outline future work.

2. OUR APPROACH

2.1. Subword Token Space for Modeling Speech and Text
To classify the user’s intent accurately, analyzing acoustic differ-
ences between intended/unintended audio alone is often not suffi-
cient; it also requires understanding the semantic meaning of the
spoken sentence. Typical speech processing units like phonemes
provide effective means of capturing target acoustic differences and
have a fixed and relatively small vocabulary size (∼40-50). Yet,
these representations do not preserve the semantic meaning associ-
ated with the sequence of words/sentence. On the other hand, while
using the whole words vocabulary provides richer semantic context,
the complete set of words in an open vocabulary application is of-
ten too large (e.g., ∼600k in English language). This poses serious
challenges for speech processing on time and memory constrained
applications. Therefore, to mitigate the limitations of these two ap-
proaches, we propose a solution that uses a subword token space for
modeling speech as well as text in our work. We deploy the Senten-
cePiece tokenizer [15] to this end. Compared to monophones, the
benefit of using the subword tokens comes from the fact that they
have loose semantic meaning that can be modeled by learning token
embeddings. Also, subwords tokens have a limited vocabulary size
(7,974 in our case) which makes them computationally much more
effective compared to the full word vocabulary which is ∼75 times
larger.

Fig. 3: Example predictions from the token-level CBOW model.

2.2. Subword Token Embeddings using Continuous BOWs

For learning subword token-level embeddings, we adopt the contin-
uous bag-of-words (CBOW) approach [14]. The CBOW model is
trained on the publicly available Wikipedia English dataset [16]. We
tokenize the Wikipedia data into subword token sequences and cre-
ate ∼181M token-level bag-of-words for training the CBOW model.
We employ the masking approach where each bag-of-words contains
five past and five future tokens to predict the middle token. This is
depicted in Figure 2, where the embedding matrix projects each sub-
word token to a 256-dim embedding. The bag-of-subwords is then
used to predict the middle token. The training consists of 20 epochs,
and uses the cross-entropy loss for predicting the target (middle)
subword. We use the learned embedding matrix as a lookup table
in experiments later. Figure 3 shows some examples of token level
predictions made using the CBOW model. As shown, five subword
tokens may correspond to a context of 1 to 5 full words.

2.3. Subword Token Posteriors from End-to-end ASR

The employed E2E ASR model is based on the Conformer en-
coder [17] architecture and it is trained using CTC loss [18, 19] to
predict frame-level posterior probabilities of the SentencePiece sub-
word tokens, as described in Section 2.2. Conformer encoders have
recently been proposed for speech recognition tasks [20, 21, 22].
The encoder consists of 12 Conformer layers, which have alternate
transformer and convolutional layers for capturing the global and
local task-specific context in audio. In our model architecture, we
use the same hyper-parameter settings as mentioned in [22], re-
sulting in ∼90M parameters in total. We train the model for 100
epochs on ∼18k hours of speech data. Once trained, we freeze this
model and use it to generate subword token-level posteriors for any
target utterance. Therefore, the employed E2E ASR model acts as a
feature extractor for the intent classification approach.

2.4. Joint Acoustic-Textual Modeling for Intent Classification

The overall architecture of our intent classification approach is
shown in Figure 4. We start by representing each audio frame (f th)
with a logarithmic scale frame-level CTC posteriors (lf ), obtained
from the E2E ASR model. The CTC posteriors are often sparse and
have high probabilities only in a few token dimensions. Instead of
processing the large sparse matrix of size T×F , where T = 7974 is
the subword-vocabulary size and F is the number of audio frames,
we compress the CTC posteriors into a sum-of-posteriors (SoP)
vector using logsumexp operation and normalization by the number
of frames F as follows:

SoPutt = logsumexp(l1, l2, . . . , lF )− log(F ) (1)
The T -dim SoPutt vector is then transformed to a dense acoustic
embedding αutt by processing it through a fully-connected layer.1.

For text processing, we are primarily interested in encoding in-
formation from the top few hypotheses of the ASR output, which is
in contrast to traditional text-based models that focus only on the top
hypothesis, which in turn may not be optimal as it is prone to ASR
errors. An obvious choice for obtaining multiple competing ASR
hypotheses is Beam-Search decoding [23], but in the absence of any
token transition probabilities and auto-regressive decoding mecha-
nism, we choose instead a relatively simple and fast “Top-N tokens

1While we denote processing of the SoPutt vector as ”acoustic” module
in this work, we recognize that frame-level posteriors obtained for subword
token space may benefit from some implicit language modeling information
learned from the global context seen by the Conformer layers.



Fig. 4: Architecture of the proposed Audio-to-Intent approach.

per frame” strategy. Specifically, we first take the Top-N subword
tokens from each frame-level posterior, where N is a tunable param-
eter of the model. Then, to preserve sequential information for each
unique token in the beam of Top-N subword tokens, we note down
the frame-wise positions where the target token was observed. The
“textual module” block in Figure 4 depicts this process. If token tn
was observed in frames fi, fj , and fk, then we construct the contex-
tual token embedding Etn as follows:

Etn = CBOW (tn) +mean(PE(fi), PE(fj), PE(fk)), (2)

where CBOW (tn) represents pretrained CBOW embedding
for tn and PE(fi) represents the positional encoding capturing
the absolute position of the tokens in the sequence using sine and
cosine functions of different frequencies [24]. We take the mean2

of all the positional encodings where tn was observed and add it to
the static CBOW embedding to encode the positional information
about the target token in its final representation Etn . If there are K
unique tokens in an utterance, we now have a matrix of K ×D size,
where D is the CBOW embedding size. We process this input text
representation using multiple layers of multi-headed self-attention
(SA) followed by the mean-summarization layer that aggregates
information across the K tokens. The aggregated text representa-
tion is stored as the embedding τutt. Once we have derived the
acoustic and text representations, as described above, we fuse them
into a single representation by concatenating the acoustic and text
embeddings. These were then used as input to our audio-to-intent
classifier, which is comprised of a simple non-linear (ReLU) and a
fully connected layer trained to make binary decisions for the target
task, as depicted in Figure 4.

2Adding two sinusodial waves of different frequencies does not result in
a sinusodial wave with a modified frequency. Particularly, sin(θ)+ sin(φ) =

2 sin( θ+φ2 ) cos( θ−φ2 ) which implies that mean(PE(fi), PE(fj)) 6=
PE(mean(fi, fj)). We hypothesize that the mean positional encodings
in (2) represent unique features which encode multiple positions where a
given token appears. The new positional encodings do not have any direct
correspondence with a linear sequence of associated “indices” as proposed
in [24] and simply follow a bag-of-positions interpretation as discussed in
[25]. Eq.(2) also ensures that the numerical range of Etn is consistent irre-
spective of how many frames a token appears in.

3. EXPERIMENTS

3.1. Datasets, Evaluation Metrics, and Models

Table 1 summarizes the two-class intent classification dataset used
in our experiments. This dataset is disjoint from the datasets which
are used to train the CBOW token embedding model and the E2E
ASR model. As the intent classification dataset is gated by an initial
wake-word detection mechanism, occurrence of unintended audio is
uncommon, which can also be seen from the class imbalance in our
datasets. The acoustic and textual modules in Figure 4 are trained
using the train set, and model convergence is tracked on the valida-
tion partition. All variations of the intent classifier are evaluated on
eval dataset in Section 3.2, where we compare the equal error rate
(EER) to capture the overall accuracy of our models. In practice, we
expect our models to have minimal false alarms and maximum true
positives for a good user-experience. Therefore, we also compare
false alarm rate (FAR) of our models at a fixed operating point of
high true positive rate (TPR) equal to 0.99.

We experimented with different sizes for acoustic embeddings
αutt in the acoustic module and different numbers of self-attention
layers in the textual module and found 512-dim acoustic embeddings
and 6 SA layers in the textual module to be the optimal choice. We
also perform the following ablation studies in Section 3.2: (i) in the
textual module, we try different values of N - the numbers tokens per
frame to construct the set of unique high probability tokens in the
utterance, (ii) we train the textual module with and without position
encodings for the subword tokens, and (iii) we use only acoustic or
only textual module for the intent classification task and compare
with the joint acoustic-textual modeling.

We compare our approach against a baseline LatticeRNN intent
classification approach [6, 7], which uses WFST [26] lattices ob-
tained from a hybrid ASR model. For consistency, we use the same
Conformer encoder from Section 2.3 as the acoustic model in the
hybrid ASR system and employ an external n-gram language model
(LM) to generate full-word-level lattices. The baseline LatticeRNN

Class train validation eval
Intended 90,634 9,809 27,338
Unintended 21,421 2,261 1,609
Table 1: Dataset for intent classification task.



System EER(%)
Without PosEnc With PosEnc

TextualA2I (N=1) 10.2 9.4
TextualA2I (N=3) 4.2 3.1
TextualA2I (N=5) 3.5 2.9
TextualA2I (N=7) 3.2 2.7
TextualA2I (N=9) 4.2 3.2

Table 2: Evaluation of textual module when trained with different
number of tokens selected per frame and trained with v/s without
positional encodings for the subword token sequences.

has the same model architecture as in [7] and it uses phonetic em-
beddings to represent words on the lattice arcs. This baseline model
is also trained using datasets from Table 1. LatticeRNN exploits
the fact that lattices from intended speech have fewer competing hy-
potheses within them due to in-domain language and high signal-to-
noise ratio, whereas noisy out-of-domain unintended speech lattices
often have higher ASR uncertainty represented by multiple compet-
ing paths in the lattice. LatticeRNN has similarities with the ap-
proach presented in this paper since both of them work with an inter-
mediate ASR representation to perform intent classification. Yet, the
approach proposed here has some notable differences: (i) it avoids
expensive WFST decoding with external LM by directly using raw
CTC posteriors instead of word-level lattices, (ii) it uses subword-
token level modeling via CBOW embeddings as compared to pho-
netic word-embeddings in LatticeRNN, and (iii) it uses positional
encodings to capture sequential information.

3.2. Results and Analysis

First, we perform an ablation study only on the textual module
(“TextualA2I”). Table 2 presents the performance of this study
under various configurations. We observe that using positional en-
codings consistently boosts our model accuracy for fixed values of
N, thereby, showing the importance of adding contextual informa-
tion to the CBOW token embeddings. We also find that the EER
of our models significantly improves as the textual module accesses
a broader beam (N) of tokens at each frame. This confirms our
hypothesis that discriminating information between intended and
unintended speech can be extracted by processing multiple potential
ASR hypotheses simultaneously whereas information available in
the top hypothesis can often be inaccurate due to ASR errors. In
Table 2, the TextualA2I (N=1) system which has the highest EER
uses a greedy ASR decoding where we pick only the best subword
token at each frame and therefore work only with a single ASR
hypothesis in the textual module. We note that there are diminishing
returns at higher values of N and the model with N=7 gives the best
EER of 2.7%.

Next, we trained the proposed audio-to-intent (A2I) classifier
using only the acoustic module (“AcousticA2I”) and it obtained an
EER of 2.7% (shown in Table 3) using 512-dim acoustic embed-
dings. Thus, we verify the hypothesis that the sum-of-posterior vec-
tors are independently highly informative for the intent classification
task. While the best AcousticA2I and the best TextualA2I mod-
els have similar performance, we emphasize that these models are

System EER(%) FAR at TPR=0.990
AcousticA2I 2.7 0.072
TextualA2I (N=7) 2.7 0.078
FullA2I (N=1) 2.1 0.067
LatticeRNN 3.5 0.111

Table 3: Evaluation of various A2I systems on eval set.

trained on different feature representations derived from the same
subword token-level posteriors as shown in Figure 4.

Finally, we trained a “FullA2I” model which uses both acous-
tic and textual modules. Table 3 provides a comparison of our best
FullA2I model with the baseline LatticeRNN approach as well as
the best AcousticA2I and TextualA2I models that we discussed be-
fore. Interestingly, the best FullA2I model that we trained required
only N=1 tokens per frame in the textual module. This suggests
that the intent-related information contained in the tokens beyond
the greedy ASR hypothesis in the textual module can be substituted
with the information available in the sum-of-posteriors vector of the
acoustic module. While we end up discarding all non-top tokens at
each frame in the textual module with N=1, the utterance-level pos-
terior probabilities of all the tokens are still available to the FullA2I
model via the sum-of-posteriors vector. We observe that the FullA2I
model outperforms both the best AcousticA2I and the best Textu-
alA2I models, which demonstrates that there is complementary in-
formation in the acoustic and textual embeddings. The baseline Lat-
ticeRNN model has an EER of 3.5% and it mitigates ∼ 89% of unin-
tended utterances at the high TPR operating point of 0.990. Contrast-
ingly, the FullA2I model has a lower EER of 2.1% and it correctly
mitigates ∼ 93% false alarms at the same TPR, thus reducing the
false alarm rate by ∼ 40% relative. All variations of the proposed
A2I approach in Table 3 outperform the baseline LatticeRNN model.
As mentioned before, the proposed approach benefits from directly
processing rich information available in the raw CTC posteriors and
avoids expensive WFST decoding to obtain full-word lattices.

To gain further insights into our approach, we inspected the input
feature space of the acoustic and the textual module. We generated
sum-of-posteriors vectors for the validation set and found that the
average entropy of the SoPutt vector for intended utterances was
0.51 and 0.60 for intended and unintended utterances, respectively.
Higher entropy for unintended utterances supports our hypothesis
that ASR is more uncertain in decoding unintended speech. We
also inspected the 100 most frequently predicted tokens in intended
speech versus unintended speech, and found that the two sets have
only 69 common tokens and there are 31 tokens unique to each of
intended and unintended speech. We expect that these unique tokens
capture the distinctions between intended and unintended speech.

4. CONCLUSIONS
In this paper, we addressed a binary intent classification task to im-
prove the accuracy of voice-assistants in detecting intended speech,
thereby making them less intrusive and privacy preserving. We
proposed a novel architecture which models acoustic and textual
information at subword-token level using sum-of-posteriors vector
and semantic embeddings obtained from a continuous bag-of-words
model. The backbone of our architecture is an E2E ASR model
which predicts subword token probabilities at the frame level. We
showed the efficacy of our approach by significantly improving the
intent classification performance over a baseline LatticeRNN model.
We demonstrated the importance of combining evidence from mul-
tiple ASR hypotheses when textual information alone is being
processed for the intent classification task. In the future, we plan
to explore a streaming version of the proposed method and tackle
a more challenging intent classification task in the wakeword-free
unconstrained speech scenario. We also aim to explore end-to-end
joint training of the ASR and the proposed A2I approach.
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Buc, E. Fox, and R. Garnett, Eds. 2019, vol. 32, Curran Associates,
Inc.

[26] Mehryar Mohri, Fernando Pereira, and Michael Riley, “Weighted
finite-state transducers in speech recognition,” Computer Speech &
Language, vol. 16, no. 1, pp. 69–88, 2002.

https://dumps.wikimedia.org

	1  Introduction
	2  Our Approach
	2.1  Subword Token Space for Modeling Speech and Text
	2.2  Subword Token Embeddings using Continuous BOWs 
	2.3  Subword Token Posteriors from End-to-end ASR
	2.4  Joint Acoustic-Textual Modeling for Intent Classification

	3  Experiments
	3.1  Datasets, Evaluation Metrics, and Models
	3.2  Results and Analysis

	4  Conclusions
	5  Acknowledgements
	6  References

