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ABSTRACT
A key function of auditory cognition is the association of
characteristic sounds with their corresponding semantics
over time. Humans attempting to discriminate between fine-
grained audio categories, often replay the same discriminative
sounds to increase their prediction confidence. We propose an
end-to-end attention-based architecture that through selective
repetition attends over the most discriminative sounds across
the audio sequence. Our model initially uses the full audio
sequence and iteratively refines the temporal segments re-
played based on slot attention. At each playback, the selected
segments are replayed using a smaller hop length which rep-
resents higher resolution features within these segments. We
show that our method can consistently achieve state-of-the-
art performance across three audio-classification benchmarks:
AudioSet, VGG-Sound, and EPIC-KITCHENS-100. 1

Index Terms— Audio classification, playback, attention

1. INTRODUCTION

Audio recognition is the task of categorizing audio with dis-
crete labels that semantically represent the emitted sounds.
This includes significant challenges considering the similarity
in object sounds (e.g. boat motors and road vehicles), musi-
cal instruments (e.g. guitar, banjo, and ukulele), human (e.g.
wail and groan), or animal (e.g. yip and growl) sounds.

In everyday life, we repeat parts of songs or ask for some-
one to repeat themselves to better understand audio. This re-
lates to the development of echoic memory which is responsi-
ble for the memorization of sounds [1, 2]. Therefore, repeated
listens and replays of sound stimulants [3] are an essential part
of learning and associating sound patterns.

Driven by the perception of sound through echoic mem-
ory and the recent success of Vision Transformers (ViT) [4]
at utilizing global context information, we propose an end-
to-end attention-based model that recognizes sounds through
discovering and playing back the most informative sounds
from the audio sequence, as shown in Figure 1. We use
slots [5] to attend to category-relevant sounds in the input se-
quence. These slots select the time segments to be replayed.

∗Work was done while A. Stergiou was at the University of Bristol.
1Our code is available at: tinyurl.com/playitback2023
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Fig. 1: Playback of discriminative sounds. Given an audio
sequence, the most relevant sounds are selected and played
back at reduced hop length. The generated playbacks attend
solely informative sounds at a higher temporal resolution.

Coarser features from earlier playbacks are memorized along-
side finer (i.e. higher-temporal resolution) features from later
playbacks with the use of a transformer decoder.

Our contributions are as follows: i) We propose to se-
lect and replay relevant audio features with decreased hop
lengths, slowing down relevant parts of the audio. ii) We pro-
pose an end-to-end transformer architecture for audio recog-
nition that jointly selects and attends to multiple audio re-
plays, and refines the final class predictions. iii) Our method
achieves state-of-the-art performance on AudioSet [6], VGG-
Sound [7], and EPIC-KITCHENS-100 [8].

2. RELATED WORK

Audio recognition. A popular approach for audio classifica-
tion has been the use of convolutional networks, previously
used for image-based object recognition [9, 10, 11] or video
classification [12] tasks, to learn features from audio spectro-
grams. The introduction of Transformer-based architectures
has further given rise to their adaptation for audio recognition
by works relying on hybrid architectures [13, 14, 15]. Simi-
lar attempts have also built on image-pretrained Transformer
models for attending audio spectrograms [16, 17]. [18] incor-
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Fig. 2: PlayItBack architecture. The spectrogram of the full audio sequence (top) is replayed by focusing on discriminative
features and reducing the hop length to capture finer temporal details (bottom). During each playback, spectrogram patches are
tokenized xi and appended patch (frequency and temporal) positional encodings (P ). Several multi-head attention layers are
used to encode features zi. Slot attention G(zi) then discovers discriminative temporal segments. These are considered input to
the next playback. To combine decisions between playbacks, a recurrent Transformer Decoder D(zi) takes previously decoded
features from i and the encoded features in i + 1 playback appended with patch encodings (PP ). PlayItBack is trained by
classification loss LCLSi

, regularized by the weighted sum of ranking losses Lranki
between i and {1, ..., i− 1} playbacks.

porated an additional video modality to improve performance.
Recently, [19] have also studied the effects of different hop
lengths on the temporal resolution of spectrograms.

In contrast to the majority of previous works, we focus
on identifying relevant and irrelevant sounds. The irrelevant
sounds are removed, while relevant segments are slowed and
replayed with predictions calculated across playbacks.
Selecting discriminative features. Modeling discriminative
features has been a central focus of image recognition meth-
ods. [20] generated features from multiple scales selecting
the best-suited features per scale. [21] proposed the aggrega-
tion of features from image regions cropped based on class
saliencies. [22] applied distortion grids on the cropped re-
gions. Most similar to our work, [23] used a recurrent CNN to
select image regions that are attended to in follow-up scales.
In their work, only a single region was selected per scale.
Instead, we identify multiple discriminative sound segments
which we combine to form the next playback.

We describe our PlayItBack method next.

3. METHOD

In this section, we describe the proposed PlayItBack architec-
ture, depicted in Figure 2. We compute the mel-spectrogram
for a given audio sequence resulting in an F×T representation
of frequency F and time T , and extract k non-overlapping
patches. We project the patches to feature tokens xi∈RD,
where D = FT . A transformer encoder B is used to encode
these into features zi. Slot attention G is applied to zi to select
the discriminative regions which, at the next playback, will be

slowed by decreasing the hop length in the spectrogram. The
Decoder D then relates features across playbacks.
Transformer Encoder. Given linear projections xi, we use
frequency and temporal patch positional encodings P . The
encoder networkB extracts representations for each playback,
zi=B(xi)∈Rd×C ,with d<FT resolution and C channels.
Slot attention. We use slot attention [5] G to iteratively map
the resulting feature vectors zi from each playback to two slot
vectors slj corresponding to the informative s1j and uninfor-
mative s2j temporal segments of the audio input respectively.
We use j ∈ {1, ..., J} to denote slot iterations. The query
Qlj = MLP (LN(slj−1)), key Klj = MLP (LN(zi)) and
value Vlj=MLP (LN(zi)) use Layer Normalization LN(·)
followed by Multi-Layer Perceptron MLP (·) to map the fea-
tures zi and slots slj vectors to a common dimension d. We
set the softmax temperature based on a fixed value

√
d.

hlj = GRU
( alj Vlj∑
m∈{1,2}

amj

)
, where alj=Attn

(Klj Q
T
lj√

d

)
(1)

A Gated Recurrent Unit (GRU) with two hidden units is used
at each slot iteration updating the slot hidden states hlj as
in [5]. A linear transformation alongside a residual connec-
tion is used for the slots slj=slj−1+MLP (LN(hlj)).

We train the two slots so s1 attends to informative audio
while s2 captures the remaining audio. This is achieved
by combining G(zi)1 = s1 and the inverse of the unin-
formative slot G(zi)2 = s2 to create the attention matrix:
M=Attn(G(zi)T1 G(zi)−12 ). We normalize and rescale the



Model Backbone Train set mAP
Audio-only models
MAE-AST [24] ViT-B [4] mini-AS 30.6
Perceiver [25] Perceiver AS-2M 38.4
Conformer [14] Conformer AS-2M 41.1
PANN [10] ResNet38 [26] AS-2M 43.4
MBT [18] ViT-B AS-500K 44.3
PSLA [9] EffNet-B2 [27] AS-2M 44.4
PaSST [17] DeiT-B [28] AS-2M 47.1
HTS-AT [16] Swin-T [29] AS-2M 47.1
MaskSpec [30] ViT-B AS-2M 47.1
Audio-MAE [31] ViT-B AS-2M 47.3
PlayItBackX3 MViTv2-B [32] AS-500K 47.7

Table 1: Comparisons to state-of-the-art audio-only mod-
els on AudioSet. We report the mean average precision (mAP)
alongside the backbone and training set used.

Model top-1 top-5 mAP AUC d-prime
Audio-only models
McDonnell & Gao [33] 39.7 71.6 40.3 0.963 2.532
Peng et al. (A) [34] 44.3 - 48.4 - -
ResNet-101 [12] 45.6 72.3 47.6 0.968 2.615
Chen et al. [7] 51.0 76.4 53.2 0.973 2.735
MBT (A) [18] 52.3 78.1 - - -
Slow-Fast [12] 52.4 78.1 54.4 0.974 2.761

PlayItBackX3 53.7 79.2 56.1 0.978 2.846
Models trained with additional modalities
Peng et al. (AV) [34] 50.6 - 53.9 - -
PolyViT [35] 51.7 - - - -
MBT (AV) 64.1 85.6 - - -

Table 2: Comparisons to state-of-the-art models on VGG-
Sound. We report the top-1 and top-5 accuracies (%) along-
side mAP, the AUC and d-prime.

main diagonal diag(M) by interpolation so that it matches
the temporal dimension of xi. Activations above the normal-
ized average (>0.5) are selected for the segments in xi+1.
Transformer Decoder. Given the extracted encoder fea-
tures zi, the decoder transformerD relates information across
playbacks. Positional encodings based on patches and the
playback number are added to zi. Considering the itera-
tive nature of the PlayItBack model, cross-attending [25]
information over playbacks enables the model to retain
general features and associate patterns that are common.
For the decoder, we define the query from the previous
playback as Qi = MLP (LN(vi)), where v1 is initial-
ized with a latent vector then updated at each playback
vi = D(zi−1, vi−1), where i > 1, key Ki =MLP (LN(zi))
and value Vi = MLP (LN(zi)) for the cross attention. This
is followed by a self-attention block. The decoder features
are then passed to a classifier shared across playbacks.
Classification and rank loss. We use an inter-playback
weighted ranking loss Lrank(i) for forcing the network to
attain more confident predictions in later playbacks. The
ranking loss Lrank(i), uses the pair-wise class probabilities
p(ω)i and p(ω)m∀m ∈ {1, ..., i− 1} for the correct class
label ω. We compute the probability difference Lrank(m↔i)

between the ith playback and all previous playbacks.

Lrank(i)=

i−1∑
m=1

λmmax(0, γ − p(ω)i + p(ω)m) (2)

The ranking loss thus uses predictions from the previous
playbacks as a reference with the expectation that p(ω)i >
p(ω)m + γ, i.e. subsequent playbacks always increase confi-
dence, where γ is the ranking loss’s margin. For stability in
training, we include a weight λm = 1

i−m computed based on
the difference between the playback indices.

We combine Lrank(i) with an inter-playback cross-

entropy loss LCLS(i) and define our multi-task loss as:

L = LCLS(1) +

N∑
i=2

β LCLS(i) + (1− β)Lrank(i) (3)

where β is a weighting parameter for the aggregation of
the cross-entropy and ranking losses. During inference, our
model uses the average of all predictions across playbacks.

4. EXPERIMENTS

Datasets We evaluate our proposed PlayItBack architecture
on three large-scale datasets. AudioSet [6] is composed of
2M 10s audio clips from YouTube annotated with 527 classes
(AS-2M). Because of the high imbalance of the dataset, we in-
stead train with the proposed AS-500K [18]. VGG-Sound [7]
consists of 200k clips of 10s length with 309 labels corre-
sponding to human actions, objects and interactions. EPIC-
KITCHENS-100 [8] includes 90k clips of hand-object inter-
actions labeled with 97 verb, 300 noun classes, and 4025 ac-
tion classes. The clip length is variable and 2.6s on average.
Evaluation metrics. For AudioSet along the lines of previous
works, we use the mean average precision (mAP). For VGG-
Sound, as in [12], we report the top-1/5 % accuracies, mAP,
AUC, and d-prime. For EPIC-KITCHENS-100 we report the
top-1/5 % accuracies for the verb, noun, and action labels.
Implementation details. We use PlayItBackX3 withN=3 as
our model for comparative evaluation, with ablations show-
casing that this produces the best accuracy (top-1)/compute
(GFLOPs) trade-off. We use the 24-layer MViTv2-B [32] as
our default encoder2. We note that due to the fixed number
of 2D patches used by MViTv2, the spectrogram dimensions
remain constant throughout playbacks. For all experiments,
we set the ranking margin γ=0.05, J = 3 slot iterations,

2The flattened vector size is d=50 and the number of features is C=768



Model GFLOPs verb noun action

top-1 top-5 top-1 top-5 top-1 top5
Damen et al. [8] N/A 42.6 75.8 22.3 44.6 14.5 28.2
MBT (A) [18] 34.2 44.3 - 22.4 - 13.0 -
Slow-Fast [12] 35.1 46.5 78.3 22.8 44.9 15.4 28.6
PlayItBackX3 122.8 47.0 78.7 23.1 45.1 15.9 29.2

Table 3: Comparisons to state-of-the-art for EPIC-
KITCHENS-100. We report the top-1 and top-5 accuracies
for the verb, noun, and action labels.

Model freq. top-1 top-5 mAP AUC d-prime
PlayItBackX0 32kHz 52.1 77.8 54.7 0.970 2.757
PlayItBackX0 16kHz 51.8 77.4 54.3 0.966 2.743
PlayItBackX1 16kHz 52.5 78.3 55.1 0.972 2.789
PlayItBackX2 16kHz 53.2 78.7 55.5 0.976 2.810
PlayItBackX3 16kHz 53.7 79.2 56.1 0.978 2.846

Table 4: Frequency to playbacks on VGG-Sound given
top-1 and top-5 accuracies, mAP, AUC, and d-prime.

and β=0.7. As in [12] we use spectrograms with frequency
dimension of 128 corresponding to inputs of size 128×100S
for S seconds of audio. Our initial spectrograms are created
based on the same hop length of 10ms, and 16kHz frequency
as in [12, 18, 31]. For subsequent iterations, we reduce the
hop length by 1ms at each iteration.

We train for 50 epochs with Mixup [36] (α = 0.3) and
base learning rate of 0.5 for AudioSet and 0.01 for VGG-
Sound & EPIC-KITCHENS-100. We use warm-up for the
first 2.5 epochs, a decayed cosine schedule, batch size of 64
with SGD, momentum set to 0.9, and 1e−4 weight decay.
Results. We compare PlayItBack to current state-of-the-art
models on AudioSet in Table 1. PlayItBackX3 achieves the
best performance in comparison to other models.

We report results on VGG-Sound in Table 2. Play-
ItBackX3 performs favorably to in-domain audio mod-
els. Compared to the previously top-performing SlowFast
model [12], we observe a +1.3%p. top-1 accuracy improve-
ment. Our model is only outperformed by the multi-modal
(audio-visual) version of MBT (AV) [18]. However, PlayIt-
BackX3 outperforms MBT (A) in the audio-only setting.

In Table 3, we compare to audio-classification methods
on EPIC-KITCHENS-100. We observe that the relative im-
provement in performance varies across datasets (higher per-
formance gains are observed in AudioSet and VGG-Sound,
while somewhat smaller on EPIC-KITCHENS-100). We be-
lieve that this is due to EPIC-KITCHENS-100 containing au-
dio segments of 2.6s in length on average, compared to 10s
durations of AudioSet and VGG-Sound. As the segments are
already shorter, they intuitively benefit less from further play-
backs by focusing on discriminative regions. Even in such
settings, PlayItBackX3 demonstrates a moderate but consis-
tent performance improvement.
Ablations. Table 1 demonstrates that while PlayItBack uses
a sampling frequency of 16kHz, it can outperform HTS-
AT [16] and PaSST [17] which are trained on sampling

J top-1 GFLOPs

1 53.3 120.4
2 53.5 121.5
3 53.7 122.8

Table 5: Number of
slot attention itera-
tions (J) with respect to
the top-1 accuracy and
GFLOPs.

50 GFLOPs
100 GFLOPs
150 GFLOPs

Fig. 3: VGG-Sound top-1 ac-
curacy over different playback-
numbers (N) with respect to the
compute (in GFLOPs).

frequencies of 32kHz. We confirm this by ablating the im-
pact on PlayItBack. Table 4 demonstrates that our proposed
replays at 16kHz, can be a better performing strategy than
increasing the number of samples per second over the entire
audio sequence as in PlayItBackX0 trained with 32kHz.

Table 5 compares the performance achieved with differ-
ent numbers of slot iterations J on VGG-Sound with Play-
ItBackX3. In general, moderate performance improvements
can be achieved by increasing the number of slot attention it-
erations. The added computations also remain moderate with
+2.6 GFLOPs from J = 1 to J = 3. In Figure 3, we investi-
gate the impact of the number of playbacks (N ) on the model
performance. We use a decoder-only model (N = 0), along-
side PlayItBackXN . Performance improvements are shown
for 1 ≤ N ≤ 3. Further N increases, come with perfor-
mance drops, due to increased model complexity in tandem
with the challenge of discovering salient information in very
deep playbacks - and thus very small hop lengths. As show-
cased in this figure and across results, N = 3 offers the best
performance. The performance remains consistent over mul-
tiple runs and across datasets.

5. CONCLUSIONS

We propose an end-to-end attention-based architecture for au-
dio recognition. Our PlayItBack model uses information from
the full audio sequence to iteratively discover segments that
are relevant to the sound. Audio segments are discovered with
slot attention and amplified in the next iteration (playback).
A transformer decoder is used to relate information across
playbacks. We demonstrate the advantages of our PlayItBack
approach through extensive experiments on AudioSet, VGG-
Sound, and EPIC-KITCHENS-100 and ablation studies.

Future work can explore the selection strategy for the
number of playbacks, which might vary per audio sample.
We hope PlayItBack can trigger insights into similar ap-
proaches for other audio signals such as speech as well as
audio-visual fine-grained understanding.
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