
END-TO-END SPOKEN LANGUAGE UNDERSTANDING
WITH TREE-CONSTRAINED POINTER GENERATOR

Guangzhi Sun, Chao Zhang, Philip C. Woodland

Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ U.K.
{gs534,cz277,pcw}@eng.cam.ac.uk

ABSTRACT
End-to-end spoken language understanding (SLU) suffers from the
long-tail word problem. This paper exploits contextual biasing, a
technique to improve the speech recognition of rare words, in end-
to-end SLU systems. Specifically, a tree-constrained pointer gener-
ator (TCPGen), a powerful and efficient biasing model component,
is studied, which leverages a slot shortlist with corresponding en-
tities to extract biasing lists. Meanwhile, to bias the SLU model
output slot distribution, a slot probability biasing (SPB) mechanism
is proposed to calculate a slot distribution from TCPGen. Experi-
ments on the SLURP dataset showed consistent SLU-F1 improve-
ments using TCPGen and SPB, especially on unseen entities. On
a new split by holding out 5 slot types for the test, TCPGen with
SPB achieved zero-shot learning with an SLU-F1 score over 50%
compared to baselines which can not deal with it. In addition to slot
filling, the intent classification accuracy was also improved.

Index Terms— spoken language understanding, slot filling,
contextual biasing, pointer generator, zero-shot learning

1. INTRODUCTION

Spoken language understanding (SLU) plays a key role in spoken di-
alogue systems, which includes user intent detection and slot-filling.
SLU is often implemented as a pipeline system that first transcribes
speech into text with an automatic speech recognition (ASR) system,
and then performs intention detection or slot-filling with a natural
language understanding (NLU) component operating only on texts.
The pipeline systems ignore the prosody and pronunciation informa-
tion embedded in the speech but not in the text and can have more
NLU errors propagated from the ASR errors, in particular, named
entity-related errors. End-to-end SLU systems [1–3] can potentially
resolve these issues, by combining the ASR and NLU components
into a single audio-grounded model. Such systems can be improved
by leveraging powerful acoustic and language representations pre-
trained with a large number of data [4–12].

While end-to-end SLU systems mitigate error propagation, the
slot-filling task still relies on the correct recognition of the named
entities in the speech, especially when the named entity contains
rare words. In end-to-end ASR systems, the recognition of those
valuable rare words is often addressed via contextual biasing which
integrates contextual knowledge represented as a biasing list into
ASR systems [18–27]. The biasing list is a list of words or phrases
(biasing words) that are likely to appear in a given context. The

Guangzhi Sun is supported by a Cambridge International Scholarship
from the Cambridge Trust. This work has been performed using resources
provided by the Cambridge Tier-2 system operated by the University of Cam-
bridge Research Computing Service (www.hpc.cam.ac.uk) funded by EP-
SRC Tier-2 capital grant EP/T022159/1.

recognition accuracy of those words can be improved if they are in-
corporated into the biasing list. In SLU and spoken dialogue tasks,
possible named entities for each slot type can be collected to form a
structured knowledge base (KB), and the biasing list can be extracted
from the KB [16] by selecting rare and unseen entities in slots that
are relevant to the current context. Therefore, applying contextual
biasing in end-to-end SLU systems is both natural and beneficial.

This paper proposes integrating contextual knowledge into the
end-to-end SLU system via the tree-constrained pointer generator
(TCPGen) [15–17]. TCPGen builds a neural shortcut between the
biasing list and the model output via a pointer generator mechanism
and uses a prefix-tree representation to handle large biasing lists con-
taining thousands of words. In addition to the improved recognition
accuracy, the slot shortlist (SS) and slot probability biasing (SPB)
methods were proposed in this paper to take full advantage of TCP-
Gen in SLU. With SS, TCPGen in SLU can handle a more focused
biasing list for better recognition accuracy by only incorporating en-
tities from a shortlist of slot types predicted using a class language
model (CLM). With SPB, TCPGen in turn provides indications of
whether an entity in the biasing list has been used for recognition
for SLU. This indication was done by estimating a distribution over
slot types from TCPGen and adding it to the original slot-filling out-
put via the pointer generator mechanism. In particular, this method
boosts the performance of the SLU system on unseen entities, and it
also enables the SLU system to achieve zero-shot learning of unseen
slot types when using a biasing list of entities belonging to that type.

Experiments on the spoken language understanding resource
package (SLURP) data [14] showed consistent improvements using
TCPGen in SLU, with a particular performance boost on unseen
entities. Moreover, SLU systems with TCPGen and SPB achieved
zero-shot learning on unseen slot types1.

The rest of this paper is organised as follows: Sec. 2 reviews
related studies. Sec. 3 introduces TCPGen, followed by Sec. 4 which
explains how SS and SLU can be applied with TCPGen. Sec. 5
describes the experimental setup, and Sec, 6 discusses the results.
Finally, conclusions are provided in Sec. 7.

2. RELATED WORK

2.1. Contextual biasing

Previous studies on contextual biasing have been focused on either
shallow-fusion-based score-level interpolation [18–20] or deep neu-
ral representation [21–24] methods. Recently, there was research
using both biasing methods. In [25, 26], shallow fusion and deep
biasing were applied together in the end-to-end ASR model. More

1Code available at https://github.com/BriansIDP/espnet/
tree/TCPGenSLU/egs/slurp/asr1

To appear in Proc. ICASSP2023, June 04-10, 2023, Rhodes Island, Greece © IEEE 2023

ar
X

iv
:2

21
0.

16
55

4v
2

 [
cs

.C
L

]
 1

4
M

ar
 2

02
3

https://github.com/BriansIDP/espnet/tree/TCPGenSLU/egs/slurp/asr1
https://github.com/BriansIDP/espnet/tree/TCPGenSLU/egs/slurp/asr1

recently, neural shortcuts to the final output distribution via a pointer
generator [15,29] or neural-FST [28] have been proposed which can
be optimised in an end-to-end fashion. TCPGen [15] also achieved
high efficiency by using a symbolic prefix-tree search to handle bi-
asing lists of thousands of words. Work in [17] used a graph neural
network (GNN) to encode the prefix tree in TCPGen, which achieved
further improvements in the recognition accuracy of biasing words.

2.2. End-to-end SLU

In recent years, end-to-end SLU systems have been trying to lever-
age external knowledge to achieve improved performance. Most re-
search focused on using implicit knowledge from pre-trained rep-
resentations, such as RoBERTa [7] and wav2vec2.0 [6]. External
knowledge from those models was integrated via knowledge distil-
lation [8] or network integration [9–12]. Specifically, in [11] and [9],
neural representations from the ASR model and text representations
from a pre-trained LM were combined in the interface for the SLU
tasks. On the other hand, external contextual knowledge can also
be extracted from explicitly structured KBs. Work in [30] applied a
knowledge encoder to encode KB entries as part of the input to the
NLU component. Work in [16] exploited the ontology in a dialogue
system for improved ASR performance.

3. TREE-CONSTRAINED POINTER GENERATOR

TCPGen is a neural network-based component combining the sym-
bolic prefix-tree search with a neural pointer generator [31] for con-
textual biasing, which enables end-to-end optimisation with ASR
systems. At each output step, TCPGen calculates a distribution over
all valid wordpieces constrained by a word-piece-level prefix tree
built from the biasing list (referred to as the TCPGen distribution).
TCPGen also predicts a generation probability indicating how much
contextual biasing is needed at a specific step. The final output is the
interpolation between the TCPGen distribution and the original ASR
model output distribution, weighted by the generation probability.

Specifically, a set of valid wordpieces, denoted as Y tree
i , is ob-

tained by searching the prefix-tree with a given history output se-
quence. Then, denoting x1:T and yi as input acoustic features and
output wordpieces respectively, qi as the query vector carrying the
history and acoustic information, and K = [...,kj , ...] as the key
vectors, scaled dot-product attention is performed between qi and
K to compute the TCPGen distribution P ptr and an output vector
hptr
i as shown in Eqns. (1) and (2).

P ptr(yi|y1:i−1,x1:T) = Softmax(Mask(qiK
T/
√
d)) (1)

hptr
i =

∑
j
P ptr(yi = j|y1:i−1,x1:T)v

T
j (2)

where d is the size of qi (see [32]), Mask(·) sets the probabilities of
wordpieces that are not in Y tree

i to zero, and vj is the value vector
relevant to j. This paper specifically focuses on the attention-based
encoder-decoder (AED) ASR model with TCPGen. In AED, the
query combines the context vector and the previously decoded to-
ken embedding, while the keys and values are computed from the
decoder wordpiece embedding, with a shared projection matrix. The
generation probability which takes a value between 0 and 1, is calcu-
lated using the decoder hidden state and the TCPGen output vector
hptr
i . Then, the final output can be calculated as shown in Eqn. (3).

P (yi) = Pmdl(yi)(1− P gen
i) + P ptr(yi)P

gen
i (3)

where conditions, y1:i−1,x1:T , are omitted for clarity. Pmdl(yi) rep-
resents the output distribution from the standard end-to-end model,
and P gen

i is the generation probability.

Slot&Intent
classification

ASR

BiLSTM

RoBERTa

AED Decoder
Hidden States

Text

Align at word boundaries

Fig. 1. End-to-end SLU system. The word-level alignment aligns
the two sequences of representations at word boundaries.

Instead of wordpiece embeddings, nodes on the prefix tree can
also be represented with GNN encodings, as proposed in [17]. GNN
encodings provide a more powerful representation by exploiting a
lookahead functionality in the tree search, where each node encodes
information about future wordpieces on its branches. Specifically, a
graph convolutional network (GCN) [33] was used in this paper.

4. TCPGEN FOR END-TO-END SLU

The SLU system in this paper is shown in Fig. 1, similar to [10, 11].
The decoder hidden state sequence from AED was first sent through
a bi-directional long short-term memory module. Then, to leverage
external knowledge from a pre-trained representation, a sequence
of RoBERTa output vectors was extracted and both sequences were
aligned and concatenated at word boundaries. The concatenated
vector sequence was sent to perform slot classification at the word
boundary of each word. Intent classification only used the output
at the final step. The AED, RoBERTa and BiSLTM modules were
jointly optimised with the ASR, slot and intent classification tasks.

4.1. TCPGen with slot shortlists

TCPGen with slot shortlists (SS) utilised a more focused biasing list
for better recognition. Specifically, a word-level causal CLM which
predicts the class of the next word given word history was applied
to predict a shortlist of the top N most probable slot types at the
beginning of each word. The biasing list can be extracted by col-
lecting entities belonging to those slots. However, when using GCN
encodings during inference, as SS kept varying during the decoding,
it was inefficient to encode the prefix tree repeatedly for every up-
date of the biasing list. To address this, prefix trees were encoded
offline for each slot type separately before decoding. The computa-
tion of the TCPGen distribution first computed the joint probability
distribution over valid wordpieces and slot types and marginalised
w.r.t. the slot types. This procedure is illustrated in Fig. 2.

As shown in Fig. 2, the number j on each node denotes a word-
piece and encodings of each node, em,j , were obtained by encoding
the tree corresponding to slot m using GCN. These node encodings
were concatenated to form the keys and the same scaled dot-product
attention in TCPGen was performed to calculate a distribution over
these node encodings, as shown in Eqn. (4).

P ptr(s, yi) = Softmax(qT
i [· · · , em,j , · · ·]/

√
d) (4)

where qi and d are the same as Eqn. (1). Finally, probabilities
of nodes corresponding to the same wordpiece were summed up to
obtain the final TCPGen distribution as shown in Eqn. (5)

P ptr(yi) =
∑
s∈S

P ptr(s, yi) (5)

2

S
1

3

2

Slot 1 (s=1)

Slot 2 (s=2)

Node Encodings
[e1,1, e1,3, e2,1, e2,6]

[P1,1, P1,3, P2,1, P2,6]

[P1,1+P2,1, 0, P1,3, 0, 0, P2,6]

Joint Probs. Pptr(s, yi)

TCPGen Distribution Pptr(yi)

S
1

6

5

AED Query qi

Fig. 2. Illustration of TCPGen with SS. The example SS contains 2
slot types with their prefix trees each containing 2 entities. Nodes
with grey fillings are the valid subset of wordpieces. Number 1 to 6
represents wordpieces. The current decoding step is i, em,j denotes
wordpiece j on tree m, and Pm,j = P ptr(s = m, yi = j)

where S denotes the set of slot types. This method is applied dur-
ing inference. Moreover, as for TCPGen, TCPGen with SS can be
generalised to work with phrases. When handling a biasing list of
entities of more than one word, instead of obtaining a new shortlist
at each word boundary, the shortlist is only updated at word bound-
aries where there are no valid paths on current prefix trees.

4.2. TCPGen with slot probability biasing (SPB)

A distribution over slot types can also be estimated from the joint
distribution in Eqn. (4) by summing all of the node probabilities on
each slot tree, as shown in Eqn. (6).

P ptr(s) =
∑

yi∈Ys

P ptr(s, yi) (6)

where Ys is the set of valid wordpieces at step i on the tree corre-
sponding to slot s. Then, this probability was interpolated with the
original SLU model output slot probabilities, weighted by the gen-
eration probability P gen

i indicating how likely the next wordpiece
token should be taken from the prefix trees, as shown in Eqn. (7).

P (s) = Pmdl(s)× (1− αP gen
i) + P ptr(s)× αP gen

i (7)

where α is the hyper-parameter between 0 and 1 to restrict the influ-
ence of TCPGen as entities found in the biasing list are not always
slot values. Pmdl(s) is the original model output slot probability.
This method was particularly beneficial to entities that are unseen in
the training set, and it realised zero-shot learning of unseen slots by
providing a list of possible entities.

5. EXPERIMENTAL SETUP

5.1. Data

Experiments were performed on the SLURP data [14]. SLURP is a
collection of 72K audio recordings of single-turn user interactions
with a home assistant, annotated with scenarios, actions and enti-
ties. Experiments were first performed using the official training,
validation and test split, with synthesised audio used during training
following [13], to show the effectiveness of TCPGen on the standard
SLU task. Additionally, a new split of the data was used by hold-
ing out utterances containing entities in five randomly selected

types (podcast name, artist name, audiobook name,
business name, radio name) to evaluate zero-shot learning
of unseen slot types. These utterances were mixed with an equal
number of randomly selected utterances with seen slots or without
slots to form the test set, and the rest of the utterances were used for
training and validation. Moreover, the Librispeech 960-hour read
English corpus was used to pre-train the ASR part of the system
before training on SLURP. For both datasets, input features used
80-dimensional (-d) log-Mel filter bank features at a 10 ms frame
rate concatenated with 3-d pitch features. SpecAugment [34] with
the setting (W,F,mF , T, p,mT) = (40, 27, 2, 40, 1.0, 2), as an
effective data augmentation method.

5.2. Biasing list extraction

The biasing list selection on Librispeech data followed [17]. For
SLURP, lists of slot entities in the data were categorised into their
corresponding slots to form the KB. In this paper, rare words are
defined as words in the KB and appeared less than 30 times in the
SLURP training set, which also includes unseen words. There were
altogether 3k rare words. The rare word biasing list can be organised
by including rare words that appeared in the list of each slot, and the
rare entity biasing list included entities containing rare words for
each list. Note that unbounded slots such as date, time or frequency
were not included in this biasing list as it was difficult and tedious
to enumerate all possible values. The size of rare word biasing lists
ranged from 4 to 712 words, and the size of rare entity biasing lists
ranged from 1 to 847 entities. For experiments on the new split, all
entities in the held-out 5 slots were used in the rare entity biasing
list as none of them appeared in the training set.

5.3. Models and evaluation metrics

The AED model used an encoder with 16 conformer blocks [35]
with 512-d hidden state and 4-head attention, 1024-d single-head
location-sensitive attention and a 1024-d single-layer unidirectional
LSTM decoder. The BiLSTM module contained a 1024-d single-
layer bi-directional LSTM. The RoBERTa base model with 768-d
output representations was used. The CLM for SS prediction was a
single-layer 2048d LSTM LM. AED models together with TCPGen
were first trained on Librispeech 960-hour data for 20 epochs. The
model parameters were then used to initialise relevant parts in the
SLU system. During training, n slot types were selected by finding
slots that appeared in the utterance annotation and adding distracting
slots to match the n used during inference. Rare words belonging to
those slot types were gathered to form the biasing list for training.

Models were evaluated using word error rates (WER) and rare
word error rates (R-WER) following [17]. R-WER is the rate of
deletion, substitution and insertion of a rare word. For SLU, the
SLU-F1 [14] was used to measure the slot-filling performance. The
baseline is a pipeline system which takes the 1-best hypothesis from
the AED model as the input to a RoBERTa-based NLU.

6. RESULTS

First, experiments with the official split of the SLURP data were per-
formed. WER, R-WER and SLU-F1 were reported as shown in Ta-
ble 1. The NLU part of the baseline used the same RoBERTa model
structure as the end-to-end SLU system. Compared to the baseline,
the end-to-end SLU system not only achieved better performance
for SLU-F1 but also better performance for WER and R-WER, as
slot-filling in a multi-task setup also facilitated ASR training.

3

Table 1. Results on the SLURP test set with the official split using
TCPGen with different sizes of SS in SLU. Std. AED + NLU is
the pipeline system. Full refers to using a single large biasing list
containing all rare words, and top n refers to using biasing lists cor-
responding to the top n slot types. SPB was not used in this table.
Entity refers to using the rare entity biasing list during inference.
Improvements were statistically significant at p ≤ 0.01.

System Biasing list WER R-WER SLU-F1

Std. AED + NLU N/A 12.7% 43.4% 77.8%

Std. SLU N/A 12.6% 43.0% 78.4%
+TCPGen full 12.4% 37.6% 78.9%
+TCPGen top 1 12.1% 37.0% 79.1%
+TCPGen top 2 11.9% 36.2% 79.2%
+TCPGen top 5 12.0% 35.6% 79.1%
+TCPGen top 10 12.1% 36.6% 79.0%

+TCPGen top 2 entity 12.0% 36.8% 79.2%

Table 2. Results on the SLURP test set with the official split using
SS and SPB in SLU, with the effects of different α values (see Eqn.
(7)). Std. AED + NLU is the pipeline system. The top 2 slot types
were used for biasing lists. Unseen referred to the SLU-F1 score
measured on entities containing out-of-training-set words.

System α SLU-F1 (unseen) Intent Acc.

Std. AED + NLU N/A 77.8% (50.5%) 87.9%

Std. SLU N/A 78.4% (51.1%) 88.6%
+TCPGen 0.0 79.2% (54.8%) 88.7%
+TCPGen 0.5 79.5% (57.5%) 88.9%

Further reductions in WER, R-WER and SLU-F1 were achieved
using TCPGen. When the full rare word list was used for biasing,
13% relative R-WER reduction was achieved, which resulted in an
increase of 0.5% in SLU-F1. This increase was mainly due to the
correct recognition of rare words. Then, more focused biasing lists
were obtained using the predicted SS. The best number of slot types
to include in the SS was found by balancing the trade-off between
the size and the coverage of biasing lists. Having more slot types
increased the chance to cover a specific rare word, but also increased
the size of the biasing list which can degrade performance. In Table
1, the best WER and SLU-F1 were achieved using the top 2 slot
types, which gave a 16% relative R-WER reduction and an increase
of 1.4% in SLU-F1 compared to the baseline. Although the top 5
achieved a lower R-WER, as the size of the biasing list increased,
the degradation of recognition accuracy on common words reduced
the overall performance. Moreover, using rare entity biasing lists
achieved a very similar performance to rare word biasing lists.

The SPB method enabled the system to further exploit rare and
unseen words that were correctly recognised using TCPGen but were
still misclassified by the SLU output, and gave an additional perfor-
mance boost as shown in Table 2. By increasing α up to 0.5, the
overall SLU-F1 increased by 0.3 compared to the best TCPGen SLU
system without SPB, which led to an increase of 1.7% in the over-
all SLU-F1 score compared to the baseline. The main contributor to
this improvement was the recall rate. However, further increasing α
degraded the SLU-F1, as the recall rate stopped increasing while pre-
cision degraded. Moreover, the intent accuracy was also compared

Table 3. Results on the proposed held-out set with unseen slots. Std.
AED + NLU is the pipeline system. TCPGen SLU in this table used
biasing lists of all selected unseen slots. Unseen slots referred to the
SLU-F1 on the unseen slot types only.

System α SLU-F1 (unseen slots)

Std. AED + NLU N/A 29.7% (0.0%)

Std. SLU N/A 30.1% (0.0%)
+TCPGen 0.0 29.6% (0.0%)
+TCPGen 0.5 42.1% (36.6%)
+TCPGen 1.0 52.0% (50.2%)

here to complete the SLU task set, and although TCPGen was not
intended to directly help intent accuracy, the classification accuracy
was also improved by 1.0% compared to the baseline.

A considerable portion of the SLU-F1 improvement using TCP-
Gen and SPB came from the improved performance on unseen
words. To illustrate the advantage of SPB in TCPGen on unseen
words in Table 2, a separate SLU-F1 was specifically calculated
for unseen entities which comprised 5% of all entities in the test
set. With the best α value for the overall performance, an F1 score
increase of 7.0% was found on unseen entities. In contrast to the
observation on the overall SLU-F1 score, the SLU-F1 score on these
entities kept increasing with an increasing α, as the recall rate on
these entities had a much larger room for improvement.

Finally, experiments were performed on the new split of SLURP
for zero-shot learning, which had 5 unseen slots in the test sets.
Results summarised in Table 3. For systems without SPB, even if
the entity was correctly recognised, the model could never classify
it to the slot type that was not covered by the training set. Thus,
the SLU-F1 was dominated by the performance on the training set
slot types for those systems. Besides, as the biasing list here only
contained entities from unseen slot types, TCPGen alone was not
helpful for the training set slot types, and only obtained a simi-
lar overall performance as the baseline and the standard end-to-end
SLU system. On the other hand, SPB drastically improved SLU-F1
scores by enabling the slot-filling output to handle entities of unseen
slot types. As before, using the best value found on the validation
set, α = 0.5, achieved 42% relative overall SLU-F1 improvement,
which also achieved an F1 score of 36.6% on unseen slots. Further-
more, if the proportion of unseen slots is known to be large, such as
in the cross-domain application scenario, the value of α could be set
higher. Eventually, with α = 1.0, TCPGen with SPB achieved an
F1 score of 50.2% on unseen slots.

7. CONCLUSION

This paper has proposed to use TCPGen in an end-to-end SLU sys-
tem. TCPGen leverages a KB containing entities that were likely to
appear in each slot type for contextual biasing. Besides, slot short-
lists (SS) predicted by a class LM were used to obtain a more focused
biasing list. Moreover, slot probability biasing (SPB) was proposed
that estimates slot probabilities from TCPGen to bias the model slot
prediction. Experiments on the SLURP data showed progressive im-
provements using TCPGen and SPB, with a large performance im-
provement in entities with unseen words. Intent detection accuracy
was also improved with TCPGen. Furthermore, TCPGen with SPB
achieved zero-shot learning, with an SLU-F1 score of 50% on un-
seen slot types following the new split with held-out unseen slots in
this paper, compared to a zero F1 score for systems without SPB.

4

8. REFERENCES

[1] D. Serdyuk, Y. Wang, C. Fuegen, A. Kumar, B.ZLiu & Y. Ben-
gio “Towards end-to-end spoken language understanding”,
Proc. ICASSP, Calgary, 2018.

[2] P. Haghani, A. Narayanan, M. Bacchiani, G. Chuang, N. Gaur,
P. Moreno, R. Prabhavalkar, Z. Qu & A. Waters “From audio to
semantics: Approaches to end-to-end spoken language under-
standing”, Proc. SLT, Athens, 2018.

[3] P. Haghani, A. Narayanan, M. Bacchiani, G. Chuang, N. Gaur,
P. Moreno, R. Prabhavalkar, Z. Qu & A. Waters “End-to-
end neural transformer based spoken language understanding”,
Proc. Interspeech, Shanghai, 2020.

[4] Y. Huang, H. K. Kuo, S. Thomas, Z. Kons, K. Audhkhasi,
B. Kingsbury, R. Hoory, & M. Picheny, “Leveraging un-
paired text data for training end-to-end speech-to-intent sys-
tems”, Proc. ICASSP, Barcelona, 2020.

[5] B. Agrawal, M. Muller, M. Radfar, S. Choudhary,
A. Mouchtaris, & S. Kunzmann, “Tie your embeddings
down: Cross-modal latent spaces for end-to-end spoken
language understanding”, Proc. ICASSP, Singapore, 2022.

[6] A. Baevski, H. Zhou, A. Mohamed & M. Auli “Wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions”, Proc. NeurIPS, 2020.

[7] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer & V. Stoyanov
“RoBERTa: A robustly optimized BERT pretraining approach”,
arXiv:1907.11692, 2019.

[8] W. I. Cho, D. Kwak, J. W. Yoon, & N. S. Kim “Speech to text
adaptation: towards an efficient cross-modal distillation”, Proc.
Interspeech, Shanghai, 2020.

[9] S. Seo, D. Kwak & B. Lee “Integration of pre-trained networks
with continuous token interface for end-to-end spoken language
understanding”, Proc. ICASSP, Singapore, 2022.

[10] A. Raju, M. Rao, G. Tiwari, P. Dheram, B. Anderson,
Z. Zhang, C. Lee, B. Bui & A. Rastrow “On joint training
with interfaces for spoken language understanding”, Proc. In-
terspeech, Incheon, 2022.

[11] M. Rao, P. Dheram, G. Tiwari, A. Raju, J. Droppo, A. Ras-
trow & A. Stolcke “Do as I mean, not as I say: Sequence Loss
Training for Spoken Language Understanding”, Proc. ICASSP,
Toronto, 2021.

[12] Y. Wang, A. Boumadane & A. Heba “A fine-tuned
Wav2vec2.0/HuBERT benchmark for speech emotion recogni-
tion, speaker verification and spoken language understanding”,
Proc. Interspeech, Incheon, 2022.

[13] S. Arora, S. Dalmia1, P. Denisov, X. Chang, Y. Ueda1, Y. Peng,
Y. Zhang, S. Kumar, K. Ganesan, B. Yan, N. T. Vu, A. Black &
S. Watanabe “ESPnet-SLU: Advancing spoken language under-
standing through ESPnet”, Proc. ICASSP, Singapore, 2022.

[14] E. Bastianelli, A. Vanzo, P. Swietojanski & V. Rieser “SLURP:
A spoken language understanding resource package”, Proc.
EMNLP, 2020.

[15] G. Sun, C. Zhang & P. C. Woodland “Tree-constrained pointer
generator for end-to-end contextual speech recognition”, Proc.
ASRU, Cartagena, 2021.

[16] G. Sun, C. Zhang & P. C. Woodland “Minimising biasing word
errors for contextual ASR with the tree-constrained pointer gen-
erator”, arXiv:2205.09058, 2022.

[17] G. Sun, C. Zhang & P. C. Woodland “Tree-constrained pointer
generator with graph neural network encodings for contextual

speech recognition”, Proc. Interspeech, Incheon, 2022.
[18] I. Williams, A. Kannan, P. Aleksic, D. Rybach & T. Sainath,

“Contextual speech recognition in end-to-end neural network
systems using beam search”, Proc. Interspeech, Hyderabad,
2018.

[19] Z. Chen, M. Jain, Y. Wang, M. L. Seltzer & C. Fuegen “End-to-
end contextual speech recognition using class language models
and a token passing decoder”, Proc. ICASSP, Brighton, 2019.

[20] D. Zhao, T. Sainath, D. Rybach, P. Rondon, D. Bhatia, B. Li &
R. Pang, “Shallow-fusion end-to-end contextual biasing”, Proc.
Interspeech, Graz, 2019.

[21] G. Pundak, T. Sainath, R. Prabhavalkar, A. Kannan & D. Zhao
“Deep context: End-to-end contextual speech recognition”,
Proc. ICASSP, Calgary, 2018.

[22] Z. Chen, M. Jain, Y. Wang, M. L. Seltzer & C. Fuegen “Joint
grapheme and phoneme embeddings for contextual end-to-end
ASR”, Proc. Interspeech, Graz, 2019.

[23] M. Jain, G. Keren, J. Mahadeokar, G. Zweig, F. Metze &
Y. Saraf, “Contextual RNN-T for open domain ASR”, Proc.
Interspeech, Shanghai, 2020.

[24] U. Alon, G. Pundak & T. Sainath, “Contextual speech recog-
nition with difficult negative training examples”, Proc. ICASSP,
Brighton, 2019.

[25] D. Le, G. Keren, J. Chan, J. Mahadeokar, C. Fuegen &
M. L. Seltzer “Deep shallow fusion for RNN-T personaliza-
tion”, Proc. SLT, 2021.

[26] D. Le, M. Jain, G. Keren, S. Kim, Y. Shi, J. Mahadeokar,
J. Chan, Y. Shangguan, C. Fuegen, O. Kalinli, Y. Saraf &
M. L. Seltzer “Contextualized streaming end-to-end speech
recognition with trie-based deep biasing and shallow fusion”,
arXiv: 2104.02194, 2021.

[27] R. Huang, O. Abdel-hamid, X. Li & G. Evermann “Class LM
and word mapping for contextual biasing in end-to-end ASR”,
Proc. Interspeech, Shanghai, 2020.

[28] A. Bruguier, D. Le, R. Prabhavalkar, D. Li, Z. Liu, B. Wang,
E. Chang, F. Peng, O. Kalinli & M. L. Seltzer “Neural-FST
class language model for end-to-end speech recognition”, Proc.
ICASSP, Singapore, 2022.

[29] C. Huber, J. Hussain, S. Stüker & A. Waibel “Instant one-shot
word-learning for context-specific neural sequence-to-sequence
speech recognition”, Proc. ASRU, Cartagena, 2021.

[30] P. Wang, X. Ye, X. Zhou, J. Xie & H. Wang “Speech2Slot:
An end-to-end knowledge-based slot filling from speech”,
arXiv:2105.04719, 2021.

[31] A. See, P. J. Liu & C. D. Manning “Get to the point: summa-
rization with pointer-generator networks”, Proc. ACL, Vancou-
ver, 2017.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser & I. Polosukhin “Attention is all you
need”, Proc. NIPS, Long Beach, 2017.

[33] T. N. Kipf & M. Welling, “Semi-supervised classification with
graph convolutional networks”, Proc. ICLR, Toulon, 2017.

[34] D. S. Park, W. Chan, Y. Zhang, C. C. Chiu, B. Zoph,
E. D. Cubuk & Q. V. Le, “SpecAugment: A simple data aug-
mentation method for automatic speech recognition”, Proc. In-
terspeech, Graz, 2019.

[35] A. Gulati, J. Qin, C. C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu & R. Pang, “Con-
former: convolution-augmented transformer for speech recog-
nition”, Proc. Interspeech, Shanghai, 2020.

5

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2205.09058
http://arxiv.org/abs/2105.04719

	1 Introduction
	2 Related Work
	2.1 Contextual biasing
	2.2 End-to-end SLU

	3 Tree-constrained Pointer Generator
	4 TCPGen for End-to-end SLU
	4.1 TCPGen with slot shortlists
	4.2 TCPGen with slot probability biasing (SPB)

	5 Experimental Setup
	5.1 Data
	5.2 Biasing list extraction
	5.3 Models and evaluation metrics

	6 Results
	7 Conclusion
	8 References

