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ABSTRACT

Spectral information of the scene can be reconstructed from process-
ing observations acquired by interferometric devices. In the case
of devices that have multiple wave interference (e.g., Fabry-Pérot
etalons), a simple inversion such as inverse Fourier transform (e.g.,
for Michelson-like interferometers) of the measured interferograms
is not straightforward due to the ill-posedness of the problem. In
this paper, we represent the system through an ∞-wave model. The
spectral reconstruction is done by a model-based approach as we
have a good knowledge of the system. Specifically, we propose to
use Loris-Verhoeven algorithm with proximal solvers and induced
sparsity on the Fourier domain of the desired spectrum. Our pro-
posal is more robust to noise compared to conventional reconstruc-
tion algorithms, as demonstrated by experiments that are carried with
interferograms computed from real spectral acquisitions.

Index Terms— Interferometry, inverse problems, interpretabil-
ity, spectral reconstruction, model-based

1. INTRODUCTION

Characterizing the spectrum of a light source (i.e., measuring its in-
tensity at each wavelength) is at the core of imaging spectroscopy,
and has deep implications in various fields, such as geology, gas de-
tection, security, remote sensing, disaster prevention, and more [1,2].
In recent times, both the scientific community and industrial venues
have shown interest in image spectrometers which operate on the
principle of interferometry, as they potentially allow for instruments
with reduced cost and dimensions and for acquisitions with finer
spectral resolution and improved SNR [3, 4].

In general, interferometry is a technique to measure the inter-
ference of superimposed coherent light waves which travel across
different optical paths, known in the field as optical path differences
(OPDs). The representation of the spectrum of incident waves in
the domain of OPD is known as interferogram. Fourier-transform
spectroscopy (FTS) defines a class of optical devices based on inter-
ferometry, which allow light waves to travel across different OPDs in
order to capture a sampled version of this interferogram. Despite the
potential benefits, the desired acquisitions are not immediately intel-
ligible to the final user, as they are only available in a transformed
domain. Therefore the problem must be approached as computa-
tional imaging system [5], as a data processing step is required in
order to reconstruct the spectrum of the incident light source from
the observed interferogram.

This work is partly supported by grant ANR FuMultiSPOC (ANR-20-
ASTR-0006), and partly by Région Auvergne-Rhône-Alpes grant “Pack Am-
bition International 2021” (21-007356-01FONC, 21-007356-02INV).

The (ideally continuous) interferogram can be interpreted as a
Fourier transformation of the original spectrum, and the reconstruc-
tion is customarily performed as an inverse transformation. How-
ever, two main issues arise: firstly, this model is just an approxima-
tion of the optical transformations that are performed by the instru-
ment itself, and a more accurate description of such phenomena may
be beneficial to the spectrum reconstruction. Secondarily, applying
such methods blindly does not take into account the characteristics
of this transformation matrix, as such inversion may not be appro-
priate if the problem is ill-posed or ill-conditioned in the sense of
Hadamard [6].

While machine learning-based approaches may provide a way to
intrinsically regularize this formulation, their applicability, at least in
their pure form, is limited as reference data is typically unavailable.
Moreover, hybrid (model- and learning-based) approaches such as
algorithm unrolling [7] and deep priors [8] rely heavily on a good
understanding of the system, which we aim to address here as pre-
liminary step and solid basis for the interpretability of such systems.

Therefore, we propose in this work a procedure of model-based
inversion, by exploiting the knowledge of the physics and the char-
acteristics of interferometric systems.

In this paper, we extend the study to a wider category of inter-
ferometers, where a potentially infinite amount of interfering waves
can be superimposed. For example, this is capable to also deal with
a vast array of instruments based on Fabry-Pérot (FP) interferom-
eters [9–12]; this is defined in our work as ∞-wave model, also
known as Airy’s distribution [3]. We propose to solve the inversion
problem through a more powerful class of solvers, notably the Loris-
Verhoeven (LV) algorithm [13] with proximal operators that better
characterize the a priori knowledge through induced sparsity on the
Fourier domain of the spectrum. While the proposed approach is it-
erative and hence with slower computational time with respect to the
truncated singular value decomposition (TSVD) [14] and the ridge
regression (RR) [15], which allow for a closed form solution, we
show in the experimental section that this allows for improved per-
formances, especially when the acquisitions are affected by noise.
Our contributions can be summed up as follows: (i) we provide a
preliminary analysis of the transfer matrix for spectral reconstruc-
tion based on its singular value decomposition (SVD); (ii) we inter-
pret the choice of the inversion protocols and their regularizations.

2. PROPOSED METHODOLOGY

2.1. Problem statement

Figure 1 shows the pipeline of an interferometric acquisition towards
reconstructing the spectrum. The direct model of the optical acqui-
sition phenomenon can be characterized as: y = Ax + e , where:
x ∈ RK (unknown) is the spectral radiance to be estimated and is ex-
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Fig. 1: The acquisition and inversion pipelines of the spectral reconstruction of observed interferograms from the real world

pressed in the domain of the wavenumbers σ = {σk}k∈[1,...,K]; y ∈
RL (observed) is the sampled interferogram obtained at the detector,
and is expressed in the domain of the OPDs δ = {δl}l∈[1,...,L];
A ∈ RL×K is a transfer matrix from the domain of wavenumbers to
that of the OPDs; and e ∈ RL is the noise, which we assume to be
Gaussian.

The goal of the inversion protocol is to estimate the value of x.
In this work, we propose to derive an estimation x̂ of the spectrum
x by Bayesian inference [6], which is equivalent to minimize a cost
function in the form:

x̂ = argmin
x

1

2
∥y −Ax∥22 + r(x) , (1)

where the right hand side is expressed as the sum of a data fidelity
term and a regularization r(x) which characterizes the a priori
knowledge on the spectrum. In the case r(x) is set to zero, eq.1 has
a closed form solution x = A†y, where A† denotes the pseudo-
inverse of A. We denote the rank of A by RA, which is equal to
the number of non-zero singular values {ψr}r∈[1,...,RA]. As the
matrix A describes an optical transformation, some of its singular
values have very small amplitudes, and consequently the singular
values ψ′

r = 1/ψr of A† tend to become extremely large. Hence,
the condition number c = max(ψr)/min(ψr) of A can either be
∞ or extremely large, which respectively defines either an ill-posed
or an ill-conditioned problem in the sense of Hadamard.

Some simple strategies are available in the literature to avoid
this problem, for which the estimation x̂ = Ãy is carried out with a
modified version Ã of A†, with penalized singular values. I.e.:

• In TSVD [14], only a given percentage 0 < λTSVD < 1 is
kept unmodified and the rest are set to zero, i.e., ψ′

r = 1/ψr

if r < λR, and 0 otherwise.

• In RR [15], the singular values are dampened by a given pe-
nalization parameter λRR such that ψ′

r = ψr/(ψ
2
r + λ2

RR)
∀r ∈ {1, . . . , R}.

2.2. Transfer matrix discussion

Here, we provide a discussion on A by observing the limit of the
number of reconstruction samples Kmax, after which we cannot re-
cover new information. Providing a full analysis of the transfer ma-
trix is out of the scope for now, so we limit the discussion to note that
we chooseKmax = RA. Note that the approaches with penalization
on the singular values (e.g., TSVD and RR) have an effect mainly
on the small singular values (which would be responsible of noise
amplification in A†), which could already be truncated above RA.
When this is already the case, TSVD and RR would instead affect
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Fig. 2: Examples of the 2- and ∞-wave models from (2) and (3).

important information on the model, for which we propose the LV-
based method in Section 2.3. Without loss of generality, we consider
two transfer models based on the number of emerging waves in the
interferometer [3]:

• The 2-wave model, characterized as follows:

alk = (1 +R2(σk)− 2R(σk) cos(2πσkδl))T 2(σk) (2)

• The ∞-wave model, characterized as follows:

alk =
1

1 +R2(σk)− 2R(σk) cos(2πσkδl)
T 2(σk) (3)

where T and R are respectively the transmissivity and reflectivity of
the surface of the interferometer.

Figure 2 shows the singular values of two examples of A for
each wave model, sampled by L = 319 OPDs in the range δ ∈
[0, 0.175] µm, and evaluated for K̃ = 319 wavenumbers in the range
σ ∈ [1, 2.85] µm−1, with R2(σk) = 0.13 and T 2(σk) = 1 ∀k.

Looking at Figure 2a, we notice a sharp drop to 0 after in-
dex 206, so RA ≊ 207. We infer that despite sampling the in-
terferogram by 319 samples, those coming from only 207 compo-
nents are linearly independent, which is the intrinsic subspace of
A. This implies that the amount of recoverable spectral informa-
tion, and thus the choice of the reconstructed samples, is bounded
by Kmax = 207 < K̃ samples. Looking at Figure 2b, we notice a
sharp drop around index 206, then the plot progressively descends
towards zero. Arguably speaking, this may be due to an aliasing ef-
fect, leading to the newly-induced low-intensity components, and in-
creasing the intrinsic dimensionality of the sampling space. In both
cases, A is not invertible since the zero and low-intensity singular
values cause the inversion to explode.



2.3. Loris-Verhoeven algorithm

We propose our LV-based solution to solve the problem. The cost
function of LV [13] can be expressed as follows:

x̂ = argmin
x

h(x) + λ g(Wx) (4)

where λ is the regularizing parameter, h(x) = 1
2
∥Ax − y∥22 is

the fidelity term, g(·) is the regularization term, and W is a linear
domain transformation operator.

In our case, we wish to impose a sparse-inducing regularizer on
the Fourier domain of the spectrum, where high-frequency compo-
nents (such as noise) can be softly discarded. For that, we first define
W ∈ RK×K as the type-II discrete cosine transform (DCT), which
is an orthogonal Fourier-related domain such that:

wij =

√
2

K
cos

(
π

K

(
j − 1

2

)
(i− 1)

)
∀i,j∈{1,...,K}

(5)

then we choose g(·) = ∥ · ∥1 as the sparsity-inducing regularizer,
which in this case becomes the ℓ1-norm of the DCT of x (i.e., mini-
mizing the number of non-zero elements in the Fourier domain).

Now, in order to solve the problem, we choose a class of solvers
based on the proximal operators [16] within a primal/dual problem.
The goal is to minimize h(x) while being penalized for inducing
sparsity on the DCT of x, without acting on A itself. That said, the
primal and dual sub-problems become, respectively:

x̂ = argmin
x∈RK

1

2
∥Ax− y∥22 + λ∥Wx∥1 (6a)

û = argmin
u∈RL

h⋆(−WTu) + λ g⋆(u/λ) (6b)

where u is the so-called dual variable, and h⋆(·) and g⋆(·) are the
Fenchel conjugates of h(·) and g(·) respectively [16].

For the ℓ1-norm, the dual norm is the ℓ∞-norm, then g⋆(x) is
defined over a multi-dimensional box of size λ defined by the ℓ∞-
norm [16]. Now, ∀ k ∈ {1, . . . ,K}, the proximal operator is:

proxλ,g⋆(xk) =


−λ if xk < −λ
xk if |xk| < λ

λ if xk > λ

(7a)

⇐⇒ proxλ g⋆(x) = min(max(x,−λ), λ) (7b)

where λ acts as a thresholding operator.
Algorithm 1 shows the LV-based updates of x and u, where x(q)

denotes the update of x̂ at the q-th iteration. η and τ are convergence
parameters such that ητ ≤ ∥W∥ = 1, while 1 ≤ ρ ≤ 2 is the over-
relaxation parameters; their specified values were chosen according
to the relevant literature [17].

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup

For the experiments, we acquire three real spectral datasets of two
main targets, described in Table 1 in details. The two targets are:

• The Sun: 1 dataset of 22 solar spectra acquired at different
times of the day.

• X-rite’s ColorChecker (CC): 2 datasets of the CC’s 24 squares
spectra by two spectrometers, SHINE and SPECIM.

Algorithm 1 Proposed method inspired by Loris-Verhoeven [13]

Require: A, W, Niters

Initialize x(0) = ATy, u(0) = Wx(0)

Initialize τ = 0.99, η = 1, and ρ = 1.9
Define proxλ g⋆(x) = min(max(x,−λ), λ)
while Stopping criterion is not met do

e
(q)
x = AT(Ax(q) − y)

x(q+ 1
2
) = x(q) − τ

(
e
(q)
x +WTu(q)

)
u(q+ 1

2
) = proxλ,g⋆

(
u(q) + ηWx(q+ 1

2
)
)

x(q+1) = x(q) − ρτ
(
e
(q)
x +WTu(q+ 1

2
)
)

u(q+1) = u(q) + ρ
(
u(q+ 1

2
) − u(q)

)
end while
return x̂ = x(Niters)

Dataset No. of
spectra, N

No. of
samples, K

Wavenumber
range, σ (µm−1)

RA,
Kmax

Sun 22 319 [1, 2] 113
SHINE 24 276 [0.67, 2.5] 206
SPECIM 24 204 [1, 2.5] 169

Table 1: Information on the available spectral datasets. RA is calcu-
lated given a transfer matrix of an instrument with L = 319 OPDs
in the range δ ∈ [0, 0.175] µm, and given the respective K and σ.

In the experiments, the physical and optical parameters of A fol-
low the characterization of a real interferometric snapshot imaging
spectrometer: the Imaging SPectrometer On Chip (ImSPOC) UV2
model, which is composed of 319 FP interferometers, correspond-
ing to L = 319 OPDs in the range δ ∈ [0, 0.175] µm. We separate
between two types of the transfer model:

• Asim: Used in the forward process for the simulation of the
observations Y ∈ RL×N from the real spectral datasets X ∈
RK×N such that Y = AsimX. The real spectra are kept raw
so that the process is as close to reality as possible.

• A: Used in the backward process for the inversion of the
observations into the estimated spectra X̂ ∈ RK×N . As dis-
cussed in Section 2.2, we choose K = RA.

Moreover, we consider high and low levels of Gaussian noise
corresponding to SNR values of {60, 50, 40} dB to better assess the
inversion protocols. The comparison with the reference is done using
the Root Mean Squared Error (RMSE).

3.2. Results and discussion

Table 2 shows the results of the three inversion protocols, applied
on the three datasets, under the 2- and ∞-wave models and the
aforementioned SNR values. For each case, we perform the tests
with many values of the regularizing parameters within reasonable
ranges. Specifically, we run each case with 225 values of λTSVD ∈
[0.2, 1], 225 values of λRR ∈ [0, 20], and 225 values of λLV ∈
log10([−3,−0.0001]), then we report the minimum RMSE and the
corresponding regularizing parameter λmin in the table.

3.2.1. Rank deficiency

Following the discussion on the number of reconstruction samples
and the rank of A in Section 2.2, Figure 3 shows the progress of
RMSE for each method as the regularization parameter traverses its



2-wave model (e.g. Michelson-based) ∞-wave model (e.g. FP-based)
SNR = 60 dB SNR = 50 dB SNR = 40 dB SNR = 60 dB SNR = 50 dB SNR = 40 dB

Dataset Method λmin RMSE λmin RMSE λmin RMSE λmin RMSE λmin RMSE λmin RMSE

Sun
TSVD [14] 0.9786 0.0782 0.9786 0.1140 0.9786 0.2632 0.9964 0.0881 0.9964 0.1212 0.9000 0.2649

RR [15] 10.8036 0.0784 13.6607 0.1143 20.0000 0.2644 2.5001 0.0864 3.3929 0.1188 20.0000 0.2612
Proposed 0.0534 0.0680 0.0643 0.0800 0.2655 0.1124 0.0358 0.0716 0.0727 0.0823 0.2824 0.1116

SHINE
TSVD [14] 0.9929 0.0584 0.9893 0.1505 0.9357 0.3229 0.9929 0.0721 0.9929 0.1536 0.9929 0.3176

RR [15] 11.1608 0.0582 14.5536 0.1508 19.1071 0.3266 2.5894 0.0705 1.5179 0.1543 0.0001 0.3177
Proposed 0.0240 0.0474 0.1478 0.0842 0.6104 0.1493 0.0347 0.0639 0.1672 0.0860 0.3294 0.1444

SPECIM
TSVD [14] 0.9929 0.0507 0.9929 0.1203 0.9036 0.2115 0.9929 0.0566 0.9929 0.1211 0.9929 0.2191

RR [15] 4.2858 0.0506 9.0179 0.1203 19.0179 0.2120 2.6787 0.0604 1.3394 0.1235 0.0001 0.2202
Proposed 0.0165 0.0459 0.1433 0.0807 0.3003 0.1394 0.0255 0.0604 0.1524 0.0823 0.2824 0.1427

Table 2: The results obtained from the three inversion protocols applied on the three datasets under the 2- and ∞-wave models and different
SNR values. For each case, we report the minimum RMSE and its regularizing parameter λ. The best RMSE values are marked in bold.
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Fig. 3: RMSE plots with respect to the regularization parameter of
each method for different numbers of reconstruction samples K.
Since the ranges of λ are different for each method (see Section
3.2), for the sake of visibility, they are normalized into the range
[0, 1] such that λplot = (λ− λmin)/(λmax − λmin).

respective range for the reconstruction of a solar spectrum, under the
∞-wave model, at 60 dB SNR.

In Figure 3a, we notice that TSVD shows a minimum RMSE at
λTSVD = 0.357, which considers only λTSVD ∗ 319 ≊ 113 singular
values, which is exactly atKmax. In Figure 3b, as we already choose
K = Kmax, TSVD shows a minimum RMSE at λTSVD that is the
closest to 1, which also clearly shows in Table 2 for all the TSVD
cases. The main reason behind this observation is that there are very
few to no singular values that would tend to zero. Moreover, in the
case of RR, the RMSEs are very close to each others over the tested
range of λRR, so there is barely any pattern to be observed, which
also reflects in Table 2 for all the RR cases.

In both figures, our proposed LV-based method shows the best
overall RMSE progress and the lowest minimum values. This fur-
ther supports the reliance on methods that reduce the noise without
directly affecting important information in the model.

3.2.2. Comparison with conventional methods: RMSE, and robust-
ness to noise

In Table 2, at a first glance, we notice that LV has the best overall
performance (i.e., minimum RMSEs), while those of TSVD and RR
are very close to each others. For SNR = 60 dB, the performance
of LV is only slightly better than those of TSVD and RR, but the
difference becomes quite significant as we move towards SNR = 40
dB with around half the RMSE on average or even less.

As the noise increases, unlike TSVD and RR, we notice that the
values of λmin for all the LV cases increase, marking an increasing
reliance on the regularization component, which induces sparsity on
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Fig. 4: Reconstruction of a solar spectrum under the ∞-wave model
for different SNR levels.

the DCT domain of the spectrum and attempts to threshold the noise
components. However, this also means that applying higher penal-
ization for the favor of the induced sparsity further smooths out the
spectrum, which is a trade-off that has to be taken into account. This
clearly shows in Figure 4, which shows a comparison between the
reconstructed spectra of a solar spectrum under different SNR levels,
showing a significant advantage in the favor of the proposed method.

4. CONCLUSION

In this work, we proposed a model-based solution for the spec-
tral reconstruction of interferometric acquisitions of the ∞-wave
model based on a powerful class of solvers, including a preliminary
discussion on the properties of the transfer matrix, as well as the
choice of the LV algorithm with proximal operators for inducing
sparsity on the Fourier domain of the desired spectrum. This work
still shows several challenges, notably the occurring mismatches at
increasing noise levels, where the high penalization of LV tends to
further smooth the spectrum, and the scarcity of real reference data
for learning-based approaches.

That said, this work proposes several future directions. First,
we plan to provide more real data from real instruments, most of
which are prototypes at the moment. Second, we plan to test this
same framework on real interferograms. Third, one could investi-
gate the use of collaborative Total Variation [18] for the inversion of
full images. Finally, this work is meant to also be a stepping stone
towards learning-based approaches to better characterize real-world
parameters that might be missing from the model-based knowledge.
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