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ABSTRACT

This paper studies the online stochastic resource allocation prob-

lem (RAP) with chance constraints. The online RAP is a 0-1 integer

linear programming problem where the resource consumption coef-

ficients are revealed column by column along with the corresponding

revenue coefficients. When a column is revealed, the corresponding

decision variables are determined instantaneously without future in-

formation. Moreover, in online applications, the resource consump-

tion coefficients are often obtained by prediction. To model their

uncertainties, we take the chance constraints into the consideration.

To the best of our knowledge, this is the first time chance constraints

are introduced in the online RAP problem. Assuming that the un-

certain variables have known Gaussian distributions, the stochastic

RAP can be transformed into a deterministic but nonlinear prob-

lem with integer second-order cone constraints. Next, we linearize

this nonlinear problem and analyze the performance of vanilla on-

line primal-dual algorithm for solving the linearized stochastic RAP.

Under mild technical assumptions, the optimality gap and constraint

violation are both on the order of
√
n. Then, to further improve the

performance of the algorithm, several modified online primal-dual

algorithms with heuristic corrections are proposed. Finally, exten-

sive numerical experiments on both synthetic and real data demon-

strate the applicability and effectiveness of our methods.

Index Terms— Chance constraints, online optimization, primal-

dual, stochastic programming

1. INTRODUCTION

The resource allocation problem (RAP) [1] is to find the best allo-

cation of a fixed amount of resources to various activates, in order

to maximize the total revenue. The online RAP has a wide range

of applications such as signal processing [2], computer resource al-

location [3] and portfolio selection [4]. This paper studies a multi-

dimensional online RAP with uncertainty. There are m resources

and k resource consumption schemes for each request. The request

for the resources arrives one by one. When the i-th request is re-

vealed, one or none of k resource consumption schemes is chosen

to satisfy this request. If l-th resource consumption scheme is cho-

sen, the revenue and the consumption of the j-th resource are ctl and

atjl respectively. The decision is irrevocable and has to be decided

immediately according to the historical information {(cτ ,Aτ )}tτ=1,

without future information. Our aim is to maximize the total revenue

with limited resource capacities, given the total number n of incom-

ing requests and considering the uncertainty of atjl.

The deterministic RAP can be modeled as a 0-1 integer linear

programming (ILP) problem. Many recent papers have studied the

online ILP problems (see [5–13] and references therein). Algorithms

in [5–13] are all dual-based which maintain dual prices in iterations
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and can achieve near-optimal solutions under mild conditions. When

a new request arrives, the decision is made immediately based on the

dual price vector. Among these studies, researchers [5–9] construct

dual problems by using historical information and solving them to

obtain the dual prices. To deal with the disadvantage that solving

dual problems may be time-consuming, researchers [10–13] propose

online primal-dual (OPD) algorithms that update the dual prices by

utilizing the dual mirror descent or projected stochastic subgradient

descent without solving optimization problems.

However, the optimization models studied in [5–13] are deter-

ministic and may suffer from poor performance when the resource

consumption is uncertain in practice. In the existing articles that

study the uncertain online optimization, the uncertainty is modeled

by the worst-case scenario value, expectation, regret, or a linear com-

bination of the above (see [14–18]). These modeling methods are

mainly aimed at the uncertainty in the objective function, while al-

most no chance constraint is considered in the existing studies.

Chance constrained programming (CCP) [19] is a widely used

stochastic programming technique to model the uncertainty in con-

straints. In stochastic programming [20, 21], it is assumed that some

parameters are uncertain and their distributions are known. If the un-

certain parameters in an active inequality constraint are set to the me-

dians, the probability of this constraint not holding is 50%. To avoid

this issue in the online RAP, this paper adopts the chance constraints

to model the uncertainty. The chance constraint is the constraint on

the uncertain parameters whose holding probability is not lower than

the prescribed level. The solution methods for CCPs have been stud-

ied by [19, 22–25]. If the uncertain parameters have a known multi-

variate Gaussian distribution, the chance constrained counterparts of

linear constraints can be transformed into deterministic second-order

cone (SOC) constraints. prekopa2013stochastic

This paper studies the online stochastic RAP considering the

uncertainty of resource consumption coefficients. The chance con-

straint are used to model the uncertainty and can be transformed into

the SOC constraints equivalently. The non-linearity and indecom-

posability of the SOC constraints make the online problem challeng-

ing to handle. The main contributions of this paper are as follows.

(1) To the best of our knowledge, this is the first time chance

constraints are introduced in the online RAP. A linearization

method is presented to transform the SOC constrained prob-

lem into a linear form suitable for the online solution.

(2) We theoretically analyze the performance of the vanilla OPD

algorithm when it is applied to solve the SOC constrained

RAP. Under mild technical assumptions, the expected opti-

mality gap and constraint violation are both O(
√
n).

(3) We propose modified versions of the OPD approach by lever-

aging the structure of the SOC constraints to effectively re-

duce the probability deviation in practice.

(4) Massive numerical experiments based on both synthetic and

real data are conducted to demonstrate the applicability and

effectiveness of the proposed algorithms.
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2. MODEL DESCRIPTION

In this section, we first formulate the deterministic model of the RAP.

Then, a nonlinear chance constrained counterpart of the RAP is es-

tablished. Finally, the CCP problem is relaxed into an integer linear

problem suitable for online solution.

2.1. Deterministic Problem

Consider the multi-dimensional RAP with n requests and m re-

sources. For each request, there are always k resource consumption

schemes that can satisfy it. When a request is revealed, the decision

maker chooses one scheme or none. Without loss of generality, a

deterministic multi-dimensional RAP can be modeled as follows:

max
x

n
∑

t=1

c
⊤
t xt

s.t.
n
∑

t=1

a
⊤
tjxt ≤ bj ,∀j = 1, . . . ,m

1
⊤
xt ≤ 1,xt ∈ {0, 1}k,∀t = 1, . . . , n

(1)

where the revenue coefficient vector ct ∈ R
k, and the resource con-

sumption vector atj ∈ R
k. The decision variables are (x1, . . . ,xn).

xtl = 1 means that t-th request is satisfied by resource consumption

scheme l. bj is the capacity of resource j. 1 denotes all-one vector.

In the online setting of ILP, the input data (ct,at1, . . . ,atm) is

revealed one by one and xt is determined instantaneously when

(ct,at1, . . . ,atm) is revealed without future information. More-

over, n and b is known and fixed before the first input arrives.

2.2. CCP Problem

In practical, the value of atj can be obtained by prediction which

yields the uncertainty. Consequently, taken the uncertainty of atj

into consideration, we formulate the following CCP problem:

max
x

∑n

t=1
c
⊤
t xt

s.t. P

(

∑n

t=1
a
⊤
tjxt ≤ bj

)

≥ ηj ,∀j = 1, . . . ,m

1
⊤
xt ≤ 1,xt ∈ {0, 1}k,∀t = 1, . . . , n

(2)

where P means probability and ηj is the given confidence level. As-

sume that the true value of atj belongs to a known Gaussian distribu-

tion with mean ātj and covariance matrix Ktj [26], and then prob-

lem (2) is equivalent to the following deterministic problem [27]:

max
x

∑n

t=1
c
⊤
t xt

s.t.
∑n

t=1
ā
⊤
tjxt + Φ−1(ηj)

√

∑n

t=1
x⊤

t Ktjxt

≤ bj , ∀j = 1, . . . ,m

1
⊤
xt ≤ 1,xt ∈ {0, 1}k,∀t = 1, . . . , n

(3)

where Φ(·) represents the cumulative distribution function of the

standard Gaussian distribution. Moreover, when atj follows a distri-

bution with a finite support, which need not to be Gaussian distribu-

tion, problem (2) can also be translated into the same form in (3) ac-

cording to the previous work [28]. Problem (3) is an integer second-

order cone programming (ISOCP) problem when ηj > 50%, ∀j.

The offline ISOCP problems can be solved by commercial solvers

such as Gurobi. However, in the online setting, it is difficult to solve

problem (3) due to its non-linearity: xt with different subscripts t

are coupled with each other in (
∑n

t=1
x⊤

t Ktjxt)
1/2. In the online

setting of CCP, the input data is (ct, āt1, . . . , ātm,Kt1, . . . ,Ktm).

Algorithm 1: OPD Algorithm for ILP

Input: d = b/n
Output: x = (x1, ...,xn)

1 Initialize: p1 = 0

2 for t = 1, ..., n do

3 Set vt = maxl=1,...,k (c⊤t − p⊤
t Ãt)el

4 if vt > 0 then

5 Pick an index lt randomly from
{

l : vt = (c⊤t − p
⊤
t Ãt)el

}

6 Set xt = elt

7 else

8 Set xt = 0

9 Compute pt+1 = max
{

pt +
1√
n

(

Ãtxt − d
)

,0
}

2.3. Relaxed Linear Problem

Proposition 1. For all t and j, the following equation holds.
√

x⊤
t Ktjxt = γ

⊤
tjxt,∀xt ∈ {x ∈ {0, 1}k|1⊤

x ≤ 1},
where γtj is formed by concatenating the square roots of the diago-

nal elements of the matrix Ktj .

To address the non-decomposable issue raised by the non-

linearity of

√

∑n
t=1

x⊤
t Ktjxt, we linearize this term to decouple

different xt. Specifically, according to Cauchy-Schwarz inequality
√

n
∑n

t=1
x⊤

t Ktjxt ≥ ∑n
t=1

√

x⊤
t Ktjxt and Proposition 1, the

nonlinear problem (3) can be approximated by

max
x

∑n

t=1
c
⊤
t xt

s.t.
∑n

t=1

(

ā
⊤
tj + Φ−1(ηj)γ

⊤
tj/

√
n
)

xt ≤ bj ,

∀j = 1, . . . ,m

1
⊤
xt ≤ 1,xt ∈ {0, 1}k, ∀t = 1, . . . , n.

(4)

Problem (4) is linear and can be solved in the online setting. The

online algorithm for solving this relaxed problem is the basis of our

algorithm for solving the CCP problem (3) and we will detail it in

the following section.

3. SOLUTION ALGORITHMS

In this section, we introduce several online primal-dual methods to

handle the online SOC constrained problem (3). Firstly, we revisit

the state-of-the-art OPD algorithm for solving the relaxed problem

(4). Then, some heuristic correction methods based on the structure

of (3) are proposed to improve the practical performance.

3.1. OPD Algorithm for online ILP

Recall that (4) is an ILP problem and Li et al. [11] have proposed

an effective OPD algorithm to solve the online ILP problem. For

simplicity, denote ãtj = ātj +Φ−1(ηj)γtj/
√
n and we present the

OPD method as shown in Algorithm 1.

In Algorithm 1, denote Ãt = (ã⊤
t1, . . . , ã

⊤
tm)⊤ and b =

(b1, . . . , bm)⊤. Algorithm 1 is dual-based which maintains a dual

vector pt. In each iteration, new ct and Ãt are revealed. Then,

xt is determined by choosing l that maximizes (c⊤t − p⊤
t Ãt)el,

where el is the unit vector with all components equal to 0 except the

l-th, which is 1. After determining xt, pt is updated by a projected



Algorithm 2: Modified OPD Algorithm for CCP

Input: d = b/n
Output: x = (x1, ...,xn)

1 Initialize: p1 = 0, d1 = d

2 for t = 1, ..., n do

3 Compute βt via equation (7)

4 Set vt = maxl=1,...,k (c⊤t − p⊤
t Ât(βt))el

5 if vt > 0 then

6 Pick an index lt randomly from
{

l : vt = (c⊤t − p
⊤
t Ât(βt))el

}

7 Set xt = elt

8 else

9 Set xt = 0

10 Compute dt via equation (8)

11 Compute

pt+1 = max
{

pt +
1√
n

(

Ât(βt)xt − dt

)

,0
}

stochastic subgradient descent method where (d − Ãtxt) is the

subgradient corresponding to pt.

The following Theorem 1 states that Algorithm 1 achieves

O(
√
n) regret and constraint violation compared to the optimal so-

lution of the ISOCP problem (3). The detailed proof of Theorem 1

as well as Proposition 1 is presented in the full-length version [29].

Theorem 1. Assume coefficient sets {ctj , ātj ,Ktj}s are bounded

and sampled i.i.d. from an unknown distribution, and the upper and

lower bounds of b/n are finite and positive. Then, the expected re-

gret and constraint violation of Algorithm 1 compared to the optimal

solution of the ISOCP problem (3) are on the order of
√
n, i.e.,

E{ctj ,ātj ,Ktj}nt=1

[

R̂ISOCP
n −

n
∑

t=1

c
⊤
t xt

]

≤ O(
√
n) (5)

E{ctj ,ātj ,Ktj}nt=1

[∥

∥(g (x)− b)+
∥

∥

2

]

≤ O(
√
n) (6)

where R̂ISOCP
n is the optimal objective value of (3), x = (x1, ...,xn)

is the output of Algorithm 1, (·)+ is the positive part function, and

g(x) is the left-hand side of the SOC constraints.

3.2. Modified OPD Algorithm for online CCP

Although Algorithm 1 has been able to obtain a near-optimal solu-

tion of the ISOCP problem (3) according to Theorem 1, its practical

performance can be further improved by narrowing the gap between

the solutions generated by Algorithm 1 and the offline ISOCP (3).

To be specific, this gap mainly comes from the following two points:

(a) The error between the offline ILP problem (4) and the offline

ISOCP problem (3).

(b) The error between the online solution and offline solution of

the ILP problem (4).

To address these issues, we propose the modified OPD Algo-

rithm 2 for solving the online CCP problem (3). In Algorithm 2, sev-

eral heuristic corrections are applied to correct the above-mentioned

errors.

First is to correct the error (a). For the j-th constraint, we intro-

duce scale factors

βtj =







1, t = 1 or
∑t−1

i=1
γ⊤
ijxi = 0

√
t−1

√

∑t−1

i=1
x⊤

i
Kijxi

∑t−1

i=1
γ⊤

ij
xi

, t > 1 and
∑t−1

i=1
γ⊤
ijxi > 0

(7)

to reduce the gap between

√

∑n
t=1

x⊤
t Ktjxt and

∑n
t=1

γ⊤
tjxt

/
√
n. Next, we define ât1(βtj) = ātj + βtjΦ

−1(ηj)γtj/
√
n and

Ât(βt) = (â⊤
t1(βt1), . . . , â

⊤
tm(βtm))⊤. In Algorithm 2, Ât(βt)

is used in place of Ãt. That is, we use
∑n

t=1
βtjγ

⊤
tjxt/

√
n to

approximate

√

∑n
t=1

x⊤
t Ktjxt. At time t, βt is calculated ac-

cording to (7) which is based on the historical decisions and will

be used in the next iteration for correction. It is worth noting that

βt = (βt1, . . . , βtm)⊤ is calculated in each round and can be

computed incrementally with low computational cost.

In the numerical experiments section 4, it is illustrated that Al-

gorithm 2 has better performance than Algorithm 1 in terms of the

constraint violation. An intuitive explanation is that Algorithm 2 is

more inclined to reject the orders with high uncertainty of resource

consumption (i.e., Ktj ) than Algorithm 1 because βt ≥ 1.

Next is to correct the error (b). The error (b) consists of two

parts, the optimality gap and constraint violation. The constraint

violation will cause the probability P
(
∑n

t=1
a⊤
tjxt ≤ bj

)

to devi-

ate from the target value ηj . It is almost impossible to reduce the

optimality gap and probability deviation simultaneously. Compared

with the optimality gap, the CCP problems have a lower tolerance

for the probability deviation. In order to reduce the probability de-

viation, we propose the following method to dynamically adjust the

right-hand-side capacity d in each iteration:

dtj =
1

n− t

(

bj − Φ−1(ηj)

√

t

n

∑t

i=1
x⊤

i Kijxi

−
∑t

i=1
ā
⊤
ijxi

)

,∀j = 1, . . . ,m.

(8)

The intuition behind the correction formula (8) is given as fol-

lows: if too many resources are spent in the early rounds, the average

remaining resources d will diminish. Then Algorithm 2 will raise the

dual price and be more likely to reject an order with high resource

consumption as a result. On the other hand, if a large number of or-

ders with high resource consumption are rejected at the start, result-

ing in an excess of remaining resources, Algorithm 2 will decrease

the dual price in order to accept more orders in the future. This cor-

rection strategy makes Algorithm 2 perform better than Algorithms

1 in numerical experiments.

4. NUMERICAL EXPERIMENTS

In this section, we compare the performance of Algorithm 1, Algo-

rithm 2, Algorithm 2 without correction (7) and Algorithm 2 without

correction (8) in terms of optimality gap and probability deviation.

These algorithms are implemented on two different models, with de-

tails given in Table 1. Table 1 lists the distributions from which the

elements in ctj, ātj or Ktj are i.i.d. sampled in two synthetic-data

experiments. X ∼ f(χ2(v)) denotes X = f(Y ) and Y ∼ χ2(v).

Table 1. Models used in the experiments.

Experiment ctj ātj Ktj d

I U[0, 1] U[0, 4] (U[0, 1])2 1

II χ2(3) 2

3
χ2(4) ( 2

3
χ2(2))2 1

4.1. Synthetic-data Experiment I (Bounded Setting)

In the first experiment, we set k = 5 and m = 4. The confidence

levels of chance constraints are set to (0.65, 0.75, 0.85, 0.95). For

each value of n, we run 20 simulation trials. In each trial, coefficients

ctj , ātj and Ktj are resampled.
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Fig. 1. Average optimality gap and probability deviation in Experi-

ment I with Uniform i.i.d. input.
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Fig. 2. Probability deviation of each chance constraint in Experiment

I with Uniform i.i.d. input.

Fig. 1 shows the average optimality gap and probability devia-

tion over all the simulation trials. The probability deviation of the

whole problem in one trail is an average:

1

m

m
∑

j=1

(

ηj − Φ

(

bj −
∑n

t=1
ā⊤
tjxt

√

∑n
t=1

x⊤
t Ktjxt

))+

, (9)

where xt is the output of the algorithms. The calculation formula for

the expected optimality gap is (5). From Fig. 1, we observe that the

optimality gaps of these algorithms are close and Algorithm 2 has

the smallest probability deviation. Fig. 1 (a) also shows that the op-

timality gap of Algorithm 2 is on the order of
√
n. Fig. 2 presents the

probability deviations of each chance constraint of Algorithm 1 and

2. Fig. 1 and 2 both illustrate that the proposed two corrections (7)

and (8) can effectively reduce the probability deviation with minor

negative effects on the optimality gap.

4.2. Synthetic-data Experiment II (Unbounded Setting)

In the second experiment, k and m are still set to 5 and 4. The

confidence levels are also the same as those in Experiment I. For

each value of n, we run 20 simulation trials. In each trial, coefficients

ctj, ātj and Ktj are i.i.d. sampled from Chi-square distributions

which are unbounded.

Fig. 3 shows the average optimality gap and probability devi-

ation, and Fig. 4 shows the probability deviations of each chance

constraint of Algorithm 1 and 2. The results of Experiment II are

similar to those of Experiment I: Algorithm 2 has the smallest prob-

ability deviation; corrections (7) and (8) can effectively reduce the

probability deviation. Although Algorithm 2 produces slightly larger

optimality gap, its optimality gap is still approximately on the order

of
√
n. In this experiment with unbounded input, Algorithm 2 has

obvious advantages: the probability deviations of the algorithms ex-

cept Algorithm 2 are larger than 10%, while the probability deviation

of Algorithm 2 is less than 1%.

In addition, the competitive ratios of Algorithm 2 in Experiment

I and II are not less than 96%, with details provided in this doc [30].

4.3. Real-data Experiment

In the following, we present an engineering application of our

method in the task of order fulfillment based on the real data ob-

tained from Cainiao Network which is a supply chain company.
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Fig. 3. Average optimality gap and probability deviation in Experi-

ment II with Chi-square i.i.d. input.
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Fig. 4. Probability deviation of each chance constraint in Experiment

II with Chi-square i.i.d. input.

The request (order) is revealed one by one, and the algorithm needs

to decide which transportation channel the order will be sent to.

xtl = 1 denotes the order t is sent to channel l. The objective coeffi-

cient is the revenue of each channel and the constraint coefficient is

the predicted transportation time of each channel. The deterministic

problem is to maximize the total revenue while ensuring that the

average transportation time is not larger than 15 working days. The

transportation time is obtained from prediction which introduces the

uncertainty in the constraint coefficients. We adopt the chance con-

straint with the holding probability of average transportation time

≥ 90%. Due to that each order must be assigned to a channel, the

constraint 1⊤xt ≤ 1 in (2) is replaced with 1
⊤xt = 1 and Algo-

rithms are also slightly modified accordingly: do not judge whether

vt > 0 and always set xt = elt . Three different transportation

channels are considered. The simulation results are shown blow.
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Fig. 5. Real-data experimental results.

The above results also show that Algorithm 2 with proposed cor-

rections is effective for reducing the value of the probability devia-

tion while not sacrificing the optimality gap too much.

5. CONCLUSION

In this paper, we study the online stochastic RAP with chance con-

straints. First, we present a linearization method that decouples the

non-linear term in second-order cone constraints and makes the on-

line solution possible. Then, we adopt the online primal-dual (OPD)

algorithm for the integer linear programming problem and establish

the O(
√
T ) regret for both the optimality gap and constraint viola-

tion. Moreover, several heuristic corrections are proposed to further

improve the performance of the OPD algorithm. Extensive numeri-

cal experiments on both synthetic and real data verify the effective-

ness of our proposed methods.



References

[1] Arash Asadpour, Xuan Wang, and Jiawei Zhang, “Online re-

source allocation with limited flexibility,” Management Sci-

ence, vol. 66, no. 2, pp. 642–666, 2020.

[2] David A. Schmidt, Changxin Shi, Randall A. Berry, Michael L.

Honig, and Wolfgang Utschick, “Distributed resource alloca-

tion schemes,” IEEE Signal Processing Magazine, vol. 26, no.

5, pp. 53–63, 2009.

[3] James F. Kurose and Rahul Simha, “A microeconomic ap-

proach to optimal resource allocation in distributed computer

systems,” IEEE Transactions on Computers, vol. 38, no. 5, pp.

705–717, 1989.

[4] Masaaki Ida, “Portfolio selection problem with interval co-

efficients,” Applied Mathematics Letters, vol. 16, no. 5, pp.

709–713, 2003.

[5] Marco Molinaro and Ramamoorthi Ravi, “The geometry of

online packing linear programs,” Mathematics of Operations

Research, vol. 39, no. 1, pp. 46–59, 2014.

[6] Xiaocheng Li and Yinyu Ye, “Online linear programming:

Dual convergence, new algorithms, and regret bounds,” Op-

erations Research, 2021.

[7] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye, “A dynamic

near-optimal algorithm for online linear programming,” Oper-

ations Research, vol. 62, no. 4, pp. 876–890, 2014.

[8] Anupam Gupta and Marco Molinaro, “How experts can solve

lps online,” in European Symposium on Algorithms. Springer,

2014, pp. 517–529.

[9] Xiao Alison Chen and Zizhuo Wang, “A dynamic learning

algorithm for online matching problems with concave returns,”

European Journal of Operational Research, vol. 247, no. 2, pp.

379–388, 2015.

[10] Wenzhi Gao, Chunlin Sun, Yuyang Ye, and Yinyu Ye, “Boost-

ing method in approximately solving linear programming with

fast online algorithm,” arXiv preprint arXiv:2107.03570, 2021.

[11] Xiaocheng Li, Chunlin Sun, and Yinyu Ye, “Simple and fast

algorithm for binary integer and online linear programming,”

in Advances in Neural Information Processing Systems, 2020,

pp. 9412–9421.

[12] Santiago R Balseiro, Haihao Lu, and Vahab Mirrokni, “Dual

mirror descent for online allocation problems,” in International

Conference on Machine Learning. PMLR, 2020, pp. 613–628.

[13] Santiago R Balseiro, Haihao Lu, and Vahab Mirrokni, “The

best of many worlds: Dual mirror descent for online allocation

problems,” Operations Research, 2022.

[14] Russell Bent and Pascal Van Hentenryck, “Online stochastic

and robust optimization,” in Annual Asian Computing Science

Conference. Springer, 2004, pp. 286–300.

[15] Russell Bent and Pascal Van Hentenryck, “Online stochastic

optimization without distributions,” in Proceedings of the Fif-

teenth International Conference on International Conference

on Automated Planning and Scheduling. 2005, pp. 171–180,

AAAI Press.

[16] Jiashuo Jiang, Xiaocheng Li, and Jiawei Zhang, “On-

line stochastic optimization with wasserstein based non-

stationarity,” arXiv preprint arXiv:2012.06961, 2020.

[17] Jialin Liu, Yuantao Gu, and Mengdi Wang, “Averaging random

projection: A fast online solution for large-scale constrained

stochastic optimization,” in IEEE ICASSP. IEEE, 2015, pp.

3586–3590.

[18] Jiashuo Jiang and Jiawei Zhang, “Online resource alloca-

tion with stochastic resource consumption,” arXiv preprint

arXiv:2012.07933, 2020.

[19] Abraham Charnes and William W Cooper, “Chance-

constrained programming,” Management Science, vol. 6, no.

1, pp. 73–79, 1959.
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